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PLANE-STRESS ANALYSIS OF AN EDGE-STIFFENED RECTANGULAR 

PLATE, TARING INTO ACCOUNT BENDING AND SHEAR 

STIFFNESS OF THE STIFFENERS 

By Yu-wen Hsu and Charles Libove 

Syracuse University 

STJMMARY 

A plane-stress analysis, by means of Fourier series, is presented 

for an isotropic or orthotropic elastic rectangular plate bounded by 

four uniform edge stiffeners and subjected to any prescribed tempera- 

ture distribution and boundary loads. 

This analysis is related to an earlier one, in which the flexural 

stiffness of the edge stiffeners was assumed to be negligible and the 

plate was assumed to be attached to the stiffeners along the latter's 

centroidal axes. In the present analysis, both the extensional and 

flexural (including transverse shear) stiffnesses of the stiffeners are 

considered, and the possibility is included that the plate is attached 

to the stiffeners along lines which are offset from their centroidal 

axes. At each corner the junction between the two meeting stiffeners 

is assumed to consist of a hinge and a coil spring. By varying the 

stiffness of the coil spring, any degree of joint rigidity, from that 

of a pure hinge to a perfectly rigid joint, can be simulated. 

Using this analysis, numerical results were obtained for a number 

of specific cases involving prescribed force loading or prescribed 

temperature distributions. 



As a check on the validity of the method, stresses were measured 

on a doubly symmetric edge-stiffened square plate subjected to stiffener- 

end loads. Good agreement was obtained between the measured and com- 

puted values of the plate and stiffener stresses. 

INTRODUCTION 

The rectangular plate with four edge-stiffeners is one of the 

basic elements in aircraft structures. The wing skin and spars, for 

example, are usually composed of such elements, with the stiffeners 

provided by spar caps, rib caps, and shear-web uprights. A ring- and 

stringer-stiffened cylindrical shell used for the interstage structure 

of a launch vehicle may also be considered to be made up of a number 

of edge-stiffened rectangular plates. Although the plate is usually 

curved in this case, the curvature effect may be negligible if the dis- 

tance between two neighboring stiffeners is sufficiently small compared 

to the radius of curvature. 

In the present paper, an elastic plane-stress analysis of this 

basic unit, the rectangular plate with four edge stiffeners, is carried 

out by means of Fourier series, for the case of any prescribed tempera- 

ture distribution, constant through thickness, and any equilibrium 

system of prescribed loads applied to the outer periphery of the stiffeners. 

The loads may include shear flows, running tensions, and stiffener end- 

tensions. This structure and loading are shown schematically in figure 1. 
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The present analysis is an extension of an earlier one (ref.l>, 

in which the flexural stiffness of the edge stiffeners was assumed to 

be negligible, the plate was assumed to be integrally attached to the 

stiffeners along the latter's centroidal axes, and the applied shear 

flow loadings were assumed to be acting along the stiffener centroidal 

axes. In the present analysis, both the extensional and flexural 

(including transverse shear) stiffnesses of the stiffeners are consid- 

ered, and (as shown in fig. 1) the possibility is included that the 

line of attachment between stiffener and plate and the line of action 

of the external applied shear flows are offset from the stiffener 

centroidal axis. 

The plate may be isotropic or orthotropic, with elastic constants 

that are independent of position and, if orthotropic, with axes of 

elastic symmetry parallel to the edges. The four edge stiffeners 

are integrally attached to the plate and are uniform. At each corner, 

the junction between the two meeting stiffeners is assumed to consist 

of a hinge and a coil spring, as shown in figure 2. By varying the 

stiffness of the coil spring any degree of joint rigidity, from that 

of a pure hinge to a perfectly rigid joint, can be simulated. 

The analysis starts with the most general case, in which no 

symmetry is assumed in either the structure, the loading, or the tem- 

perature distribution. A number of special cases with various 

symmetries and several limiting cases with zero or infinite flexural 

stiffness for the stiffeners are then obtained by reduction of the 
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general case. Some of the limiting cases are physically equivalent 

to problems considered in earlier papers (refs. 1 and 2), and the 

equations for these cases are found to be equivalent to those obtained 

in the earlier papers. 

Using the present analysis, computations were made for a number 

of specific cases involving prescribed forces or prescribed tempera- 

ture distribution. Curves of plate and stiffener stresses are presented 

showing the influence of flexural and transverse shear stiffness of 

the stiffeners, eccentricity (with respect to stiffener axis) of the 

line of attachment between plate and stiffener, and type of joint 

(hinged or rigid) at the corner where the stiffeners meet. 

As a check on the validity of the theoretical results, an experi- 

ment was conducted on an edge-stiffened square plate under stiffener 

end loads, and a comparison, showing generally good agreement, is 

presented of the measured and computed plate stresses, stiffener 

tensions and stiffener bending moments. 

Mo're detailed descriptions of the structure and loading will be 

given in the following sections of this report, along with the results 

of the analysis, the results of calculations, the details of the 

experiment, discussion and concluding remarks. 

The symbols are defined when they are first used, and the more 

important ones are compiled for ease of reference in appendix A. 

The details of the analysis are given in appendices B and C. 

A detailed reading of these appendices is not required for the 



understanding and use of the results presented in the main body of 

this paper. 

Acknowledgement. This investigation was conducted at Syracuse 

University with the financial assistance of the National Aeronautics 

and Space Administration under research grant NsG-385. The computa- 

tions were supported in part by the National Science Foundation grant 

GP-1137. 

DETAILED DESCRIPTION OF STRUCTURE 

Dimensions and Coordinate System. The plate and stiffener 

combination is shown schematically in figure 1. The plate has a 

length of a and awidth of b, measured from lines of attachment 

to the stiffeners. Any point in the plate is identified by its 

coordinates x and y in a Cartesian reference frame whose origin 

is.at one comer of the plate and whose axes coincide with two 

adjacent edges, as shown in the figure. 

Stiffeners. The stiffeners are assumed to be uniform and will 

be treated as beams with shearing deformations permitted. That is, 

plane sections will be assumed to remain plane, but not necessarily 

perpendicular to the stiffener axis. The cross-sectional areas are 

denoted by Al, A2, A3, and A4 for the stiffeners located at x = 0, 

x=a,y = 0, and y = b respectively. Similarly, El, E2, E3, E4 

will denote the Young's moduli of the stiffeners; Gl, G2, G3, G,,, 

their shear moduli; 11, 12, I39 I4 their cross-sectional moments of 
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inertia about centroidal axes perpendicular to the plane of the plate; 

andA A A A sl' s2' s3' s4 their effective cross-sectional areas for com- 

puting transverse shear stiffness in bending parallel to the plate. 

Thus, EIIls E212, E313, E414 will denote the bending stiffenesses of 

the stiffeners located at x = 0, x = a, y = 0, and y = b respectively; 

and G A 1 sl' G2As2' G3As3' G4As4 will denote the corresponding transverse 

shear stiffnesses. 

The offset distance between the centroidal axis of a stiffener 
. . . 

and its line of attachment to the plate is denoted by t;, fi, ti or 

t;, as shown in figure 1. Similarly the offset distance to the line 

of action of an external shear-flow loading is denoted by ty., ti, ty 

or t 5: in figure 1. If a stiffener is joined to the plate along 

several lines (e.g., two rows of rivets), the inner line will be 

regarded as the line of atachment for purposes of the present analysis. 

Any portion of the plate outside this line can be regarded as part of 

the stiffener, 

Stiffener junctions. As shown in figure 2, two stiffeners meeting 

at a corner are assumed to be joined by a hinge and a coil spring, the 

hinge coinciding with the corner of the plate and therefore offset 

from the stiffener axes. The coil spring stiffnesses are denoted by 

kl, k2, k3, and k4 (moment per radian) for the corners located at 

(o,o), (a,o>, (a,b), and (o,b), respectively. The ends of a coil 

spring at any corner are assumed to be attached to the cross-sections, 

rather than the axes, of the two stiffeners meeting at the corner. 
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In view of the fact that shearing deformations are being considered 

for the stiffeners, the relative rotation of the end cross-sections 

of two meeting stiffeners is not necessarily the same as the relative 

rotation of their axes. By setting the coil-spring stiffness equal 

to zero or infinity, one can simulate a hinge or a rigid junction, 

respectively- 

Loading. The assumed loading is shown in figure 1, It consists 

of forces P' P" 
Y9 Y9 

etc. applied to the centroids of the end cross 

sections of the stiffeners, and distributed tensions Nl(y), N2(y), 

N3(d , N4 (x> and shear flows q1 (y> , q2 (y> , q3 W , q4 bd applied 

externally along the stiffeners. The distributed tensions and shear 

flows have dimensions of force per unit length. The loading as a whole 

is assumed to constitute an equilibrium system. 

Thermal strains. The temperature distribution, and hence the 

thermal deformations corresponding to unrestrained thermal expansion 

of each infinitesimal plate element or each infinitely thin stiffener 

slice, are assumed to be known. The notation for these thermal 

deformations is indicated partially in figure 3. It is as follows: 

In the plate the thermal strains are ex(x,y) and e,(x,y) in the x- 

and y- directions, respectively. There is no thermal shear strain 

in the plate relative to the x and y axes, because these axes are 

parallel to the directions of elastic symmetry of the plate.. If the 

stiffeners were cut into infinitely thin slices by means of sections 

perpendicular to their axes, then, in view of the assumption that 
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plane cross sections remain plane, the thermal deformation of each 

slice could be described by means of two quantities: the strain and 

the curvature of the centroidal fiber of the slice, The former will 

be denoted by e,(y), e,(y), e,(x), and e,(x) for the stiffeners located 

at x = 0, x = a, y = 0, y = b, respectively. The latter (the thermal 

curvatures, not shown in figure 3) will be denoted by K.l(y), K,(y), 

K3 h> , Kc4 (x) , respectively and will be considered positive if they 

correspond to elongation of the inner fibers. If there is no variation 

of temperature through the depth of the stiffeners, these K'S will 

be zero, 

The thermal deformations are assumed to be measured relative to 

some datum temperature distribution for which the plate is stress-free 

and the stiffener cross sections free of resultant thrust and bending 

moment. 

Notation for total strains. The total strains (thermal plus 

elastic) at the stiffener axes are denoted by cl(y), E,(y), ;(x) 

and Ep f or the stiffeners located at x = 0, x = a, y = 0 and 

y = b respectively. The total normal strains in the plate are represented 

by cX(x,y) in the x-direction and cy(x,y) in the y-direction. The 

plate shear strain is symbolized by Y ,,(X,Y> 0 

Notation for internal forces. Figure 4 indicates the notation 

employed for the internal forces in the stiffeners and plate. 

Pi(Y), P2(Y), p3w, P4(x) denote the cross-sectional tensions in 

the stiffeners located at x = 0, x = a, y = 0, y = b, respectively. 
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The corresponding stiffener bending moments (about centroidal axes) 

are denoted by Ml(y), M2(y), M3(x), M4(x), and the transverse shears 

by V1(y), V2(y), V3W, v4W - The plate normal-stress resultants 

(force per unit length) are represented by Nx(x,y) and Ny(x,y) and 

the shear-stress resultant by N ,,(X,Y> 0 

The comer moments produced by the coil springs at stiffener 

junctions are denoted by Fl, E2, E3 and E4 (see fig. 4) for the plate 

corners (O,O), (a,O), (a,b) and (O,b), respectively. As implied in 

figure 4, a corner moment is considered to be positive if it corresponds 

to a reduction of the angle between the two neighboring stiffener end 

cross sections on which it acts. Because of the possible eccentric 

mutual reactions, Vi(O), Vi(b), etc., at the stiffener ends (see fig. 4) 

the corner moments z 1, M2, etc. are in general not identical to the 

limiting values of the stiffener bending moments Ml(O), M3(0), M2(0), 

M3(a), etc. as the stiffener ends are approached. Instead, they are 

related to each other by equations (Byi'), 

Stress-strain relations. With the above notations established, 

the assumed stress-strain relations for the components of the structure 

can now be described. For the stiffeners they are as follows: 

with the Young's moduli El and E2 independent of Y, E3 and E 4 

independent of x. Equation (1) gives the strains along the axes of 

the stiffeners- The strains in the stiffeners along their lines of 



attachment to the plate are obtained by adding to these the strains 

due to bending moment and temperature variation across the depth of 

the stiffener. Thus the stiffener strains along the lines of attach- 

ment are 

e + ct (a = 1,2,3,4) (2) 
clcl act 

for the stiffeners at x = 0, x = a, y = 0, y = b, respectively. 

The plate stress-strain--displacement relations are taken to be 

au x = cx = ex + CINx - C3Ny 

av 
ay = EY = eY + C2NY - c3Nx 

av au + - = ‘y 
ay ax XY = C4Nxy (3) 

where u(x,y) and v(x,y) are the x-wise and y-wise displacement 

components, and the compliances C 1' c2' C3 and C4 are independent of 

x and ye If the plate is homogeneous and isotropic, with thickness 

h, Young's modulus E, and Poisson's ratio v, then 

In order to describe 

1 Cl = c2 = Eh 

c3 = 2 

the assumed moment-curvature relations for 
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the stiffeners, it will be convenient to introduce a notation for 

the displacements of the stiffeners in direction perpendicular to 

their axes. Let u:(y) and u;(y) denote the x-wise displacements 

of points along the axes of the stiffeners located at x = 0 and 

x = a, respectively; and similarly let v;(x) and v:(x) denote the 

y-wise displacements of the stiffeners along y = 0 and y = b, 

respectively. Then the curvatures of the stiffener axes can be 

represented by d2uF/dy2, d2u;/dy2, d2+dx2 and d2vq*/dx2, and 

the following relationships are assumed between these curvatures and 

the forces and moments acting on the stiffeners: 

d2u; Ml (Y) 1 
7= 

---- 
El1l GIAsl 

[Nx(O,y) - J$(Y)I - K,(Y) 

d2u* 2 3 (Y) 1 ----- 
-g--- E212 G2As2 

[Nx(a,y) - N2(y)! - L~(Y> 

d2v; M3 Cx> 1 
x= 

--- 
E313 

- iNy(xsC) - N3ejl - G<,(X) 
G3As3 

d2V * 4 M4 (xl 1 --= -- 
dx2 E414 

- - INy(x,b) G.A 
4 s4 

- N4(x)1 - K,(X) 

The first term on the right side of each equation represents the 

curvature due to bending moment, the sezJ,nd the curvature of the 

stiffener axis due to rate of change of transverse shear, and the 

last the curvature produced by temperature variation across the 
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stiffener. The stiffeners are assumed to be so constituted that 

transverse shear strain arises only from transverse shear force; 

that is, the stiffener temperature distribution per se does not 

destroy the normality between stiffener cross sections and 

stiffener axis, 

In anticipation of the subsequent imposition of continuity 

conditions between stiffener and plate edge, it may be noted, 

parenthetically, that the curvature along any constant x line 

in the plate is given by 

a2u 
3 

= c4J!$Y-; a”y + c,$ 
- '2 ax 

and along any constant y line by 

a2v aNXy aeX aNX 
ax’= '4 ax - 7 - ‘1 7 

YY 
+ '3 ay 

These expressions can easily be derived from equations (3), 

At the comers, where the stiffeners meet, the relative 

rotation of the stiffener axes , positive for a reduction of the 

angle between them, is 

M1 vp --+- v3 (0) 
kl GIAsl +G3As3 

M2 --+ v2 (0) V3 (a> --- 
k2 G2As2 G3As3 

(54 

(5b) 

at x = 0, y = 0; 

at x= a, Y = 0; 

I 14) 

12 



M3 V,‘(b > V4 (a> 
--- -- 

k3 G2As2 G4As4 
and 

M4 VIW v4 (0) _--- - 
k4 GIAsl + G4As4 

at x=a,y= b; 

at x = 0, y = b; 

Theaangle changes of the plateNat the corresponding comers are 

given by 

c4 (Nxy)x=O y=o , 

- C4(N > xy x=a, y =0 

C4(Nxy)x=a, y=b 

and - c4(Nxy)x,() y=b , 

respectively. In the subsequent analysis (Appendix B) the two sets 

of angle changes, (A) and (B), will have to be equated. 

SERIES EXPANSIONS FOR PRESCRIBED LOADS AND THERMAL STRAINS 

The results of the present analysis, to be discussed shortly, 

consists of formulas for the stiffener and plate stresses, stiffener 

moments and transverse shears, in terms of the given loading and 

thermal-strain distribution. However, the loading and thermal 

strains do not appear explicitly in these formulas, it is rather 

the Fourier coefficients of these quantities that are required. In 

anticipation of this requirement, it is assumed that the given 
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distributed loadings can be expressed in Fourier series of the 

following form, with known coefficients: 
N 

Nl(y) = C B' 
n=l n 

sin (y) 

N 
N2(y) = C B; 

n=l 
sin (y) 

M 
N3(x) = C B"' sin (7) 

m=l m 

M 
N4(x) = C B"" sin (y) 

m=l m 

N 
ql(y) =nzo Q' n CO6 (y) 

N 
q2(y) = C Q" 

n=O n co9 (y) 

M 
q3(x) = C Q'" cos (y) 

m=O m 

M 
q4(x) =mio %,, cos (Y) 

The known curvatures of the stiffeners arising from the known 

temperature variation across the stiffeners are also assumed to 

be representable by Fourier series with known coefficients, as 

follows: N 
K~(Y) =& KA sin (y) 

(6) 

(7) 

(8) 

w 
K2(y) = 1 Kz Sin (y) 

n=l 
M 

K~(x) = c KA" sin (y) 
m=l 

M 
K~(X) = c Ki" Sin (y) 

m=l 
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Similarly, certain thermal-strain differences and certain 

first derivatives of the plate thermal strains at boundary are 

assumed to be known in the form of Fourier series, as follows: 

N 
e,(y) - ey(O,y) = n& T ' sin (y) n 

N 
e2 (Y) - e,(a,y> = n& Tn" sin (y) 

M 
e,(x) - ex(x,O) =mil Tm"' sin (?I 

H 
e4 (4 - ex(x,b) = m&Tm"" sin (y) 

21 

N 

ax x=0 = n=l C L,' sin (y) 

(5) 
N 

ax x=a = n=l c Ln" sin (y) 

aeX 
(-- ay jy=o =nil Li' sin (y) 

ae M 
( + ay y=b =m41 LzU sin (y) 

Finally, a2ey/ax2 + a2ex/ay2 is assumed to be known and repre- 

sentable by the following series in the open region O<x<a, 

O<y<b: 

a2e a2e M N m7rx sin - sin y a 

1 
(9) 

I 
(10) 

(11) 

15 
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Finite upper limits M and N are shown for the summation indexes 

in equations (6) to (11) in expectation of the fact that it will 

normally be necessary to use truncated rather than infinite 

series for practical computational reasons. 

The Fourier coefficients appearing in equations (6) to (11) 

can be determined from the usual definitions. For example, 

B,' =f I 
b 

0 
Nl(y) sin y dy 

Q$ = + I", ql(y) cos y dy 

2 
b 

T,' = b 
I 

[e,(r) - ey(09Y)1 sin b = dy 
0 

sin - sin y dxdy “7 
where 6 is Kronecker's delta. no Integration by parts in 

equation (12) gives the following alternate formula which permits 

T to be evaluated from the first derivatives of and e mn eY X 

instead of the second derivatives: 

T mm 4 rnnx =- -- 
mn a ab 

N cos - sin y dxdy a 

nn -- k 
b ab sin y dydx 

(12) 

(13) 

Equation (13) can be used for discontinuous e or e 
Y 

x provided 

that aey/ax and aex/ay are regarded to be infinite, in the 
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manner of the Dirac delta function, at the loci of points of 

discontinuity. If e and e are continuous in the closed 
Y X 

region O"xSa, Ofygb, further integration by parts gives 

mr 4 b 
T = --- 
mn a ab I [e (a,y) cos rnT - ey(O,y)] sin y dy 

0 y 

m7rx 
ey(x,y) sin a - sin y dxdy 

cos n71 - ex(x,O)] sin 7 dx 

- (F) 2. ex (x,y> sin 22Y 
b sin y dydx 

RESULTS OF ANALYSIS 

The analysis in Appendix B gives equations for the plate 

stress resultants, the stiffener tensions, bending moments and 

transverse shears, mainly in the form of Fourier series. In the 

first of the following subsections, these equations are pointed 

out, that is, their location in Appendix B is given. Subsection 

(2) tells how the Fourier coefficients and other unknowns appear- 

ing in these equations can be computed and gives the basic 

equations for the general case and the simplified form of the 

basic equations for various symmetrical and antisymmetrical cases. 

Subsection (3) provides simplified basic equations for several 

(14) 
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limiting cases (zero eccentricity between plate edge and stiffener 

axis, zero or infinite flexural and shear stiffness for the stiffeners). 

The subsections (4) and (5) describe and give results for twenty- 

two numerical examples, showing the effect of varying selected 

parameters. The last subsection (6) provides a discussion for the 

numerical results and indicates the importance of the parameters 

that are considered. 

(1) Equations for the plate and stiffener stresses. The 

equations for the plate stress resultants, the stiffener tensions, 

bending moments, and transverse shears are given in Appendix B and 

are summarized in Table 1. 

TABLE 1. SUMMARY OF PLATE AND STIFFENER STRESS RESULTANTS 

Plate Shear Stress 
Resultants 

Plate Normal Stress 
Resultants in y- 
direction 

SYMBOL 

N 
XY 

N 
Y 

I REGION OF 

EQUATION VALIDITY 

(B34) 

(~24) 

Entire Plate 

Entire Plate 
excluding 
edges 

(B25)-(B28) Edges, ex- 
cluding 
comers 

1 

, 

ia 



TABLE 1 (continued). SUMMARY 0F PLATE AND STIFFENER STRESS RESULTANTS 

REGION OF 

$JANTITY SYMBOL EQUATION VALIDITY 

(B29) Entire Plate, 
excluding 
edges 

(B30)-(B33) Edges, ex- 
?late Normal N 
Stress Resultants X 

eluding 
comers 

in x-direction 
First four 
equations 
of 
(B133) Comers 

stiffener Transverse 
shear Forces Vi(i=lj2,3,4) (B15) Entire 

Stiffener 

Pi(i=1,2,3,4) 

Stiffener Axial 
Tensions Pi (0) ,Pi: (b) 

(i=1,2) 
Pj (0) 'Pj (4 

Ci=3,4) 

Comer Moments Pro- 
duced By Coil Springs k(i=1,2,3,4) 

Stiffener Bending 
Mi(i=1,2,3,4) 

tioments 

(B13) Entire 
Stiffener, 
excluding 
ends 

076) Stiffener 
ends 

' (g& @tJ 

i (B129)-(B132) 

(B14) Entire 
Stiffener, 
excluding- 
ends 

MiKO,Mi(b) 
(i=1,2) 

Mj (0) ,Mj (4 

(j=1,2) 

(B77) Stiffener 
ends 
(x=O+,y=O+, 
x=&,y=b-) 

19 
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Table 1 is self-explanatory. However it may be worthwhile 

calling attention explicitly to certain aspects of the equationS 

cited in it. For example, it is noted that equation (B24) given 

for the plate stress resultant N 
Y' 

is not valid along the 

plate edges. Special equations, (B25) to (B28) are therefore 

given in Table 1 for the plate stress resultant N 
Y 

along the 

plate edges. These special equations are, in turn, not valid at 

the plate comers, and other equations, (B133), are therefore 

indicated for the plate comers. Analogous remarks apply to the 

plate stress resultant Nx, the stiffener axial tensions, and the 

stiffener bending moments. It was noted earlier that because of 

the mutual reactions Vi(b), V4(0), etc. at the stiffener 

junctions (see fig. 4), the limiting internal values of the 

stiffener bending moments, namely M4(0), Ml(b), etc., are not 

necessarily equal to the comer coil spring moments c,, etc. 

For the same reason the limiting values of the stiffener tensions, 

P4(0), Pi(b) ,etc., are not in general equal to the externally 

applied stiffener end loads PxII', P ", etc. 
Y 

Evaluation of series coefficients and other basic unknowns. 

In order to use the equations listed in Table 1 for numerical 

calculation of stresses, etc., one must first evaluate the Fourier 

coefficients c' c" cl", c"" 1 I, ,111 
n' n' m m , g:, isi, gn , gn , jms s:, s:, s:", 

S 
,111 

m' b;, bi, b:", bi", and v', v", v"', v"" appearing in them, as n m m 

20- 



well as the comer moments c 1' M2’ fi,, E 4’ and the stiffener end 

shears vl(0),+vl(b), etc. The first eight groups of coefficients, 

namely, CA through pi", and the four comer moments 3 1' M2’ M3’ g4, 

are the key to the calculation of the other unknowns. Once these 

*key unknowns are evaluated, the following sequence of steps will 

lead to the remaining unknowns: From equations (Bill) to (B118) 

compute the stiffener end shears vi(O), vi(b), etc.; from equations 

(B76) the stiffener end tensions; from equations (B77) the stiffener 

end moments; and from equations (B92) and (B94) to (B99) the remaining 

Fourier coefficients for the plate stresses (jmn), stiffener tensions 

(s' n, etc.), stiffener bending moments (b:, etc.) and stiffener trans- 

verse shears (VA, etc.). Thus the basic.objective in the rest of 

this section is to describe the calculation procedure for the key 

unknowns, c' n through g:", g,, M2, M3, and E4. 

These key unknowns are defined by various systems of simul- 

taneous equations in Appendix B, depending upon the type of 

symmetry of the structure and loading and the type of connection 

at the stiffener junctions. These various systems of equations 

are summarized in Table 2. Those cases which have been studied 

numerically, and for which computed results wil'l be given sub- 

sequently, are indicated in the table by heavily outlined boxes. 

The box with a double border in the upper left comer of Table 

2 contains the most general equations; the equations for all the 

othercases represented in Table 2 can be obtained by reduction 

from this most general case. 
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TABLE 2. EQUATIONS FOR COMPUTING c's, g's AND Ml, fi,, M3, fi4 

PROPERTIES OF 
SYMMETRY 

NONE 

(general case) 

SINGLE SYMMETRY: 
Structure and loading 
sTetrical about 
y-2 

DOUBLE SYMMETRY: 
Structure and loadi 
symmetrical about y-2 
and+. 

ENTIRE SYMMETRY: 
Square plate; structure 
and loaqng syetrical 
about y-2' r, and the 
plate diagona s. z 

SINGLE ANTISYMMETRY: 
Structurg symmetrical 
about y-2; loading 

9 isymmetrical about 
y-2" 

DOUBLE ANTISYMMETRY: 
Structurg syetrical 
about r-2' 7; loading 

9 isymmetrical about 
-7 

ENTIRE ANTISYMMETRY: 
Square plate; structgre 
symmetrical about r-2' 
x-$, and plate diag- 
onals; loading anti-b 
symmetrical about y-7 
e, but symmetrical 
about plate diagonals. 

7 CORNER CONDITIONS (SAME TYPE AT ALL CORNERS) 

ELASTIC-JOINTED 

(B119) to (~126) 
and (B129) to 
(B132) 

(B135) to (B142) 

<B149) to (B152); (B144) to (B147) 
M given by (B148) with G=O 

<B157), (~158); 
M given by (B156) 

(B160) to (~167) 

(B169) to (B173) 

(B178) and (B179) 
!i given by (B177) 
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HINGE-JOINTED 

(B119) to- (B_126) 
FE; Ml=M2=M3= 

4 

(B135) to- (B140) 
with Ml=M2=0 

(Bi54), (B155') 
with M=O 

(B1602 to (B165) 
with Ml=M2=0 

(B169) to (B172) 
vith ii=0 

(B175) and(Bl76) 
with &O 

RIGID-JOINTED 

;B119) to 
,B126) and 
:B129) to 
:B132) with 
Ll+2+3=k4=m 

'B135) to 
:B142) with 
:l.=k2=m 

'B144) to 
'B148) with 

CEO 

B154) to 
B156) with 
= OD 

B160) to 
B167) with 

l=k2=m 

B169) to 
B173) with 
=03 

B178) _and 
B179) M 
;iven by 
:B177) with 
: = OD 

1 



A procedure for solving the most general equations, those in the 

double-bordered box, follows: 

(a). Solve equations (B119) to (B126) simultaneously, for c's 

and g's in terms of the other four unknowns G,, G2, E3 and E 4' (An 

iterative procedure, such as the Gauss-Seidel iteration method, will 

probably be advisable in this step, especially for large M and N.) 

(b). Substitute the results from (a) into equations (BI29) to 

(B132) to eliminate the c's and g's, and thus obtain four equations 

containing only the Ml, M2, M3 and fi4 as unknowns. 

(c). Obtain the values of the fil, fi2 etc., by solving these 

four equations simultaneously. 

.(d). Substitute the values of fix, z, etc., into the results 

obtained in (a) to compute the values of c's and g's. 

For the other cases represented in the table, some simplifi- 

cations of this prucedure is possible. For example, for the case of 

a non-symmetrical structure with purely hinge-jointed stiffeners, 
- - 
Ml, M2s M3 and E4 vanish; hence, as indicated in the table, equa- 

tions (B119) to (B126) alone are sufficient for a solution for 

each of the c's and g's, while equations (B129) to (B132) become 

unnecessary. Thus steps (b) to (d) of the above procedure can be 

eliminated. 

The case of mixed comer conditions (i.e,, some joints purely 

hinged, others not) is not included fn Table 2. However, such a 

case can be handled with the general equations in upper-left box 
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of Table 2, by merely equating to zero the appropriate corner moment 

fi,, $, fi3 or M4) and the corresponding spring constant (kl, k2, k3 

or k4> for every joint that is hinged, In addition, for each hinged 

comer one of the four equations (B129) to (B132) must be omitted 

from the system in accordance with the following scheme: 

Eq. (B129) omitted if comer (0,O) is purely hinged. 

Eq. (B130) omitted if comer (a,O> is purely hinged. 

Eq. (B131) omitted if comer (a,b) is purely hinged, 

Eq. (B132) omitted if comer (0,b) is purely hinged, 

These equations relate the angle change of a plate comer to the 
* 

angle change of the coil spring at that comer. The equation to 

be omitted develops the indeterminate form fi/k = O/O in one of its 

terms when the comer moment and spring stiffness are equated to 

zero. If the indeterminacy is removed by first multiplying 

through by the.spring constant, the equation merely re-states 

that the comer moment vanishes. 

For the case of single symmetry, single antisymmetry, and 

double antisymmetry, the procedure is similar to the one just 

described, except that smaller systems of equations are involved. 

For the cases of double symmetry, entire symmetry, and entire 

antisymmetry in Table 2, a further simplification was made for 

* 
This significance of equations (B129) to (B132) is more readily 
apparent from their earlier form, (B128). 
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k # m: The equations corresponding to (B129) to (B132) were solved 

explicitly for the comer moments (they are all numerically equal 

in these cases) in terms of the c's and g's, and the comer 

moments were then eliminated in the equations corresponding to 

(Bl19) to (B126). Therefore for these cases the equations,which 

are given for the c's and g's do not involve comer moments, and 

the c's and g's can therefore be computed immediately in terms of 

known quantities. When k = ~0 (rigid-jointed stiffeners), however, 

it so happens that, for the case of double symmetry and entire 

symmetry, the equations corresponding to (B129) to (B132) can not 

be solved explicitly for the comer moments, and the above simpli- 

fication is not possible. 

(3) Limiting cases0 A simplification results in the equations 

of Table 2 if some limiting cases of the structure are considered. 

The simplified equations for several such limiting cases are 

derived in Appendix B and listed fn Table 3. The equations in 

column A of Table 3 were developed for the purpose of the numerical 

work, the results of which will be presented later. The equations 

in the remaining columns were developed for the purpose of com- 

parison with earlier work of others. Limiting case D corresponds 

to the case considered in reference 1; limiting cases B and C 

correspond to certain special cases in reference 2. Thus a partial 

check on the correctness of the present analysis is obtained by 

noting that equations (B198) to (B201) in table 3 are equivalent 
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to equations (B61) to (B64) of reference 1, respectively, and equa- 

tions (Blgl), (B192) and (B193) in Table 3 are equivalent to equa- 

tions (B57), (E34) and (E35) of reference 2, respectively, 

TABLE 3. EQUATIONS FOR COMPUTING c's, g's AND fi FOR SEVERAL LIMITING 

CASES 

'ROPERTIES 

YMMETRY 

None 

Double 

Symmetry 

Entire 

Symmetry 

Entire 

Anti- 

symmetry 

T 
(A) 

:ero eccentricity 
between plate 
edges and stiffener 
lentroidal axes 

:B180) to (B182) 

LIMITING CASE 

0) 
Two opposite 
stiffeners 
have infinite 
bending and 
shear stiffness, 
two other stif- 
feners have zerc 
bending stiff- 
ness (including 
limiting case A 
and K'=K""=O for 
all E %d m) 

(B191) 

:B183) to (B185) 
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(0 
All four 
stiffeners 
have infi- 
nite bend- 
ing and 
shearing 
stiffnesses 
(includ- 
ing limit- 
ing case A 
and K'=O 
for a?1 n) 

(B192) to 
(B194) 

1 
08 

All four 
stiffeners 
have zero 
bending 
stiffness 
(including 
limiting 
case A) 

(B198) to 
(B201) and 
(B196) 



(4) Description of numerical examples.' The foregoing general 

results were used to obtain numerical stress data for twenty-two 

illustrative problems, These problems are of three types: then-nal- 

stress problems involving a continuous "pillow-shaped" temperature 

distribution, without any applied loads; "shear lag" problems, in- 

volving the diffusion of loads from the stiffener ends into the 

plate; and thermal-stress problems involving a discontinuity in 

temperature between the stiffeners and plate. The three groups of 

problems are shown schematically in figure 5. 

In all these problems, the plate is square (b=a) and isotropic, 

with Young's modulus E, Poisson's ratio v = 0,3 and thickness h0 

The four stiffeners are identical, with cross-sectional area A, 

effective shear cross-sectional area As and bending moment of 

inertia I. The stiffeners are assumed to have the same Young's 

modulus as the plate and to have no temperature variation through 

their depth, The structure, loadings, and thermal strains in these 

problems are symmetrical about both center lines, namely x and y = 

2, and also about the plate diagonals. This kind of symmetry was 

referred to as entire symmetry in tables 2 and 3, 

In the thermal stress problems, the stiffeners are at a 

uniform temperature of zero, while the plate has either.a "pillow- 

shaped" temperature distribution of the form 8 sin (2) sin (F) 

(fig. 5(a)) or a constant temperatur,e of 8 (fig. 5(c)), Thus 8 

denotes the temperature rise of the plate center relative to the 
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In the shear-lag problem (fig. 5(b)), the temperature is uniform 

and the loading consists of identical tension loads of magnitude P 

'applied to the end cross section of the stiffeners, 

Additional information about the numerical examples is given 

in Table 4, which consitutes a summary description of all the twenty- 

two cases analyzed numerically. As shown in Table 4, the stiffeners 

were assumed to be either rigidly joined (k = m) or purely hinged 

(k = 0) at their junctions. A range of values of the stiffener 

flexibility parameter ha3/I was used; high values of this parameter 

represent fairly flexible stiffeners, and zero represents stiffeners 

which are perfectly rigid under bending moment. The area ratio 

parameter 4ah/s2A was assumed to have the same value 1.0 for all 

the twenty-two cases, In two of the numerical examples (Nos. 7 and 

14 in Table 4), some offset (ti = 0.0272a) was assumed between the 

stiffener axes and the lines of attachment of stiffener to plate; 

in the remaining examples this offset was taken as zero. In six 

of the cases, deflections due to transverse shear in the stiffners 

were neglected by the device of equating the effective shear area 

As of the stiffeners to infinity; these cases are identified by 

A/As = 0 in Table 4. In the remaining cases, shear deformations 

of the'stiffeners were considered, and the effective shear area 

As was taken equal to the effective stretching area A, as an 

approximation. A value of A/A, slightly greater than 1,O would 

probably have been more appropriate. However, since the appropriate 
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value of A/A, varies with the shape of the stiffener cross section, 

and since the effects of transverse shear were expected to be small 

in any case, the value 1,O was selected as a reasonably good one 

to indicate the order of magnitude of the effects of transverse 

shear deformations, 

Table 4 also shows the value, namely 39, of the upper summation 

indexes M and N used in the calculations, The size of M indicates 

the size of the system of simultaneous equations that has to be 

solved (eOgo, 40 equations for M = 39), The value M = N = 39 was 

chosen after trial calculations with M and N as high as 49, because 

it gave sufficient accuracy without excessive computation time 

(average computing time = 7 minutes per problem on the IBM 7074 for 

solving the simultaneous equations and computing the stresses), 

The last ti70 columns~of Table 4 give the.main equations em- 

ployed in solving the listed twenty-two numerical examples and 

the figures in which the numerical results are plotted, 

It is worth mentioning that the solution to the problem of 

discontinuous temperature distribution (no external load, constant 

plate temperature 8, zero stiffener temperature) was obtained very 

easily from the solution to the shear lag problem by means of a 

superposition technique, as indicated in Table 4. This superposition 

technique is described in Appendix C. 

(5) Results of numerical examples, The numerical results of 

the twenty-two example problems listed in Table 4 are presented 
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TABLE 4. LIST OF PROBLEMS SOLVED AS NUMERICAL EXAMPLES 

'roblen: Xassifi 
lumber cations Results 

RIGID 
llloyooolo 

figs. 
9 (b) (i) , 
9 (4 (i) 
figs. 
9(a&9(b: 
(0, 9 Cdl 

figs. 
9 6) (ii), 
12 

500 0 " 

00 " 

110,000 0 " 

4 figs. 
9 (b) (ii> 
9 cc> (ii> 

fig. 
9 (4 (i> 

5 

6 fig, 
9 cc> (ii> 

7 (B154) tl 
(~156) fig. 

9 Cd) 

8 (~180) fig. 
(B181) 9(a) 

10,000 0 " 

500 0 

0 0 " 

figs. 
10 (a)(i) 

lo(b)(i) 

iigs. 
lO(bXd 

fig. 
lO(b)dj 

9 (B180) ti 
(~182) 

1 

- 
1 figs. . . 

10 (aXf ‘) 

lO(b)d), 

10 (40) l- - 
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TABLE 4. (Continued), LIST OF PROBLEMS SOLVED AS NUMERICAL EXAMPLES 

?roblem Classifi- Stiffener ha3 ti 4ah A -- 
?umber cations. Joint I ax As Employed Results 

13 RIGID 0 0 1 0.3 39 (B180) to 
(B182) figs. 

10 (a) 
Wi), 
10(c). 
(i). 

L4 10,ooq .0272 " 1 " " (B154) to 

\ (B156) fig. 
10(d). 

L5 

16 

17 

HINGED 110,000 0 w 1 I! " (B180) 
(B181) figs. 

e4 10 (a> (i: 
a 10(b) 
4 (iii), 11 
4 (4 (ii>. 

0 0 0 " 1 " " ,I figs. 
10(a) 
(ii), 10 

I% (b) (iii 
4 10 (4 
Pa (iii.). 
X 

II c/l 110,000 0 u 0 II 11 (1 fig. 10 
(4 (ii). 

L8 

19 

20 

21 

22 

,I 0 0 " 0 II II 11 figs. 1 
(a)(iii 
10(c) 
(iii). 

--is 
RIGID 110,000 0 u 1 " " fig. 11 

NOTE : All problems are for an entirely symmetric square plate. 

1. No,external load; plate temperature =6 sinE sin% ; stiffener 
temperature = 0. 

2. A tension load p applied at each stiffener end. Unfform tempera- 
ture throughout the plate. 

3. No external load; plate temperature = 8; stiffener temperature = 0. 
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in the form of dimensionless plots of the plate stress resultants N 
X’ 

N N 
Y' xy 

as functions of x for fixed values of y, the stiffener 

tension P,(x), stiffener bending moment M3(x), and stiffener trans- 

verse shear V,(x). In view of the symmetry which exists about the 

plate center lines and diagonals, these results plotted over the 
< 

range 0 = x/a h 0.5, 0 6 y/a S 0.5 suffice to describe the results 

for the entire structure. All stresses, tensions, moments and shears 

were computed at x/a intervals of 0.02 in the region x/a = 0 to 

0.1, and 0.05 in the region x/a = 0.1 to 0.5. In the y-directions 

y/a intervals of 0.1 were used. 

The results are presented in figures 9 - 12. In these figures 

the results are grouped in different ways in order to show the effect 

of varying one or another of the parameters involved. Because of 

these groupings, the same set of results may appear in more than one 

place, as indicated by the last column of Table 4. The figures and 

the significant parameter which is varied in each are described 

below: 

(A) Figure 9 gives numerical results for the pillow-shaped 

temperature distribution problems, with 

04 ; 

(i) Figure 9(a) showing effect of stiffener joint rigidity 

(ii) Figure 9(b) showing effect of stiffener bending 

stiffness parameter (ha3/I); 

(iii) Figure 9(c) showing effect of stiffenertransverse 

shear stiffness parameter (A/As); 
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(iv) Figure 9(d) showing effect of eccentricity between the 

stiffener axes and the lines of attachment of stiffener to plate (ti/a). 

(B) Figure 10 gives numerical results for the shear-lag prob- 

lems; with 

04 ; 

(i) Figure 10(a) showing effect of stiffener joint rigidity 

(ii) Figure 10(b) showing effect of stiffener bending stiff- 

ness parameter (ha3/I); 

(iii) Figure 10(c) showing effect of stiffener transverse 

shear stiffness parameter (A/As); 

(iv) Figure 10(d) showing effect of eccentricity between 

the stiffener axes and the lines of attachment of stiffener to plate 

(ti/a). 

(C) Figure 11 gives numerical results for the discontinuous 

temperature distribution problems, with 

' (2) F-g 1 ure 11(a) showing effect of stiffener bending rigidity 

parameter (ha3/I>; 

(ii) Figure 11(b) showing effect of stiffener transverse 

shear stiffness parameter (A/-As). 

(D) Figure 12 gives a comparison between the pillow-shaped 

temperature distribution and the discontinuous temperature distri- 

bution. 

(6) Discussion of numerical results. The typical difference in 

effect between rigid and hinged joints for the stiffener connections 

, can be seen in figure 9(a) for the pillow-shaped temperature distri- 
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bution and figure lo(a)(i) for the shear-lag problem. The plate stress 

resultants N 
X 

and NY are only slightly affected by the type of joint 

rigidity, with the effect being a localized one near the comers. The 

shear stress resultant N 
xy 

is more markedly affected, but again the 

effect is significant only near the comers. As is to be expected, 

the hinged joint permits larger values of N at the comer than does 
w 

the rigid joint. Because of shear deformations in the stiffeners, 

N 
w 

is not zero at the comers even for rigid-jointed stiffeners. 

As far as the stiffener stresses are concerned, the effect of 

joint rigidity is seen to be negligible for the stiffener tensions, 

but significant (as is to be expected) for the stiffener bending 

moments and shears. The effect on the stiffener bending moments 

and shears is most noticeable at the stiffener ends, of course. 

However, the effect propagates along the length of the stiffener 

towards the center a distance which depends on the stiffener 

flexural stiffness. In figure lo(a)(i), for example, with ha'/1 = 

110,000, denoting a fairly low flexural stiffness, the stiffener 

shear and bending moment are essentially the same for hinged and 

rigid joints when x/a is greater than 0.1. On the other hand, 

figure 9(a), for a higher flexural stiffness (ha3/I = lO,OOO), shows 

the stif.fener shear and bending moment differing significantly for 

hinged and rigid joints over a greater length of stiffener. 

For the limiting case of infinite stiffener flexural stiffness 

(ha3/I = 0), it should, of course, make no difference to the plate 

if the stiffener junctions are rigid or hinged. This expectation is 

borne out by the computed results in figures 10(a)(S) and (iii), where 
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a single set of curves represents the plate stress resultants for both 

rigid and hinged joints. .In this case the stiffener stresses, except 

for the bending moment, are also unaffected by the type of stiffener 

junction. The stiffener bending moments for hinged and rigid joints 

are seen to differ only by a constant when the stiffenerflexural 

stiffness is infinite (figs. lO(a)(ii) and (iii)). 

When the stiffeners are infinitely rigid in both flexure and 

shear (ha3/I = 0, A/As= 0) and the loading is that which corresponds 

to the shear-lag problem (that is, equal tensions at the stiffener 

ends), it is to be expected that all the requirements of equilibrium 

and compatibility can be satisfied by a homogeneous state of biaxial 

tension in the plate with zero shear, and uniform tension along the 

length of each stiffener. This expectation is bome.out by the com- 

puted results in figure 10(a) (iii). The plate stresses and stiffener 

tension shown there agree well with those that would be obtained by 

a simple direct and exact calculation based on considerations of 

equality of strain between stif.fener and plate and overall equili- 

brium of each stiffener. This agreement constitutes a check on the 

correctness of the equations and method of the present paper. 

The effect of stiffener flexural.stiffness is demonstrated in 

figure 9(b) for the pillow-shaped temperature distribution, figure 

10(b) for the shear-lag problem, and figure 11(a) for the discon- 

tinuous temperature distribution problem. Except in figure 

lO(b)(iii), the stiffener junctions are taken as rigid. 
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For the pillow-shaped temperature distribution problem with rigid- 

jointed stiffeners, the plate stress resultants Nx, NY and N 
xy 

change 

3 only slightly as the stiffener flexibility parameter ha /I varies 

from 110,000 to 10,000, as shown in figure 9(b)(i). The change, 

however, is more pronounced in figure 9(b)(ii), where the parameter 

ha3/I.is varied from 500 to the limiting value of 0. These changes, 

whether slight or pronounced, are seen to be most significant near 

plate comers and plate edges. The irregular wiggles appearing in 

figure 9(b)(i) along the line y/a = 0 are believed to be not present 

in actuality but caused by slow convergence of the series for the 

stresses along plate edges. 

By comparing figures 9(b)(i) and (ii) of the present paper 

with figure 5(c) of reference 1 (in which stiffener flexural stiff- 

ness was assumed negligible), it can be seen that for fairly large 

values of the stiffener flexibility parameter, say ha /I 10,000, 3 h 

the analysis neglecting stiffener flexural stiffness (ref. 1) is 

sufficiently accurate for all of the plate stresses except those 

near the plate comers. For smaller values of ha3/I, on the other 

hand, the present type of analysis appears to be needed in estimating 

plate thermal stresses even in the interior region of the plate. 

The effect of stiffener flexural stiffness on the stiffener 

stresses for the pillow-shaped temperature distribution problem is 

slight for the stiffener tensions but may be significant for the 

stiffener bending moments and transverse shears (see, for example, 

36 



fig. 9(b)(c)). It should be noted that because of finite stiffener 

flexural stiffness, the stiffener end tensions are not zero, despite 

the absence of external stiffener end loads. 

,Corresponding to figure 9(b)(i) for the pillow-shaped tempera- 

ture distribution problem, figure lo(b)(i) shows the effect of stiffener 

flexural stiffness for the shear-lag problem by comparing plate and 

stiffener stresses for ha3/I = 110,000 and 10,000. It is noticed that 

for the same variation of the stiffener flexibility parameter ha3/I the 

change of plate stresses is more significant for the shear-lag problem 

than for the pillow-shaped temperature distribution problem. The 

effect is again more significant near plate comers. 

Comparing figures 10(b) of the.present paper to the corresponding 

figure in reference 1 (fig. 6(c)), it is observed that the analysis in 

reference 1, which neglects flexural stiffness of the.stiffeness, is 

applicable only for fairly high values of ha3/I, say ha3/I z 110.,000, 

in the central region of the plate. At the plate comers, considerable 

difference is observed between the results of reference 1 and the 

present results. Most importantly, the plate comer shear stress.re- 

sultant N 
XY 

is finite in figure 10(b) but infinite in the result 

given in reference 1. A noteworthy effect of stiffener flexural 

stiffness is to cause the limiting internal stiffener tension at the 

stiffener end to be different from the externally applied stiffener 

end load. This is evident from the fact that P3(x)/P is not equal to 

unity at x/a = 0 in figures 10. 
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Because the shear deformation of a beam is usually insignificant 

compared to the deformation due to bending, it is to be expected that 

the effect of finite transverse shear stiffness of the stiffeners on 

the plate and stiffener stresses will be small for plates with stiffeners 

of practical size. This expectation is supported by the results in 

figure 9(c)(i) for the pillow-shaped temperature distribution problem 

with rigid-jointed stiffeners and figure lO(c)(ii) for the shear-lag 

problem with hinge-jointed stiffeners. In both figures the value of 

ha3/I = 110,000 is used, which corresponds to the stiffeners of fairly 

low (but practical) flexural stiffness. The alteration of plate stresses 

in these two figures, due to varying the stiffener shear stiffness pa- 

rameter A/As from 1.0 to 0, is seen to be very small and localized 

near plate comers. The alteration of stiffener tensions and shears is 

also insignificant and localized near stiffener ends. As far as 

stiffener bending moments are concerned, figure 9(c)(i) again shows a 

small and localized (near stiffener ends) change when A/A, is varied 

from 1.0 to 0. Figure lO(c)(ii), however, exhibits a significant and 

non-localized change of bending moment for the shear-lag problem with 

hinge-jointed stiffeners. 

It is known that when the stiffeners are more and more stiff in 

bending the stiffener shear stiffness will play a more and more 

important role in stiffener lateral deflection. Consequently, for a 

plate with stiffeners of very high bending stiffness, the effect of 

stiffener shear stiffness on the plate and stiffener stresses may be 
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expected to be highly significant. This expectation is confirmed by 

the results in figures 9(c)(ii), 10(c)(i), lO(c)(iii) and 11(b). For 

all these figures the stiffener flexural stiffness parameter ha3/I is 

taken as the limiting value of 0. It is noticed that, in this case, 

the effect of varying the stiffener shear stiffness-is by no means 

a localized one near plate comers as in the case of low stiffener 

flexural stiffness. Rather, the effect on the plate normal stress 

NY of the pillow-shaped temperature distribution problem (fig. 9(c) 

(ii)) is seen to be more significant in the central region of the 

plate than near the comers. 

It should be mentioned that-the dashed curves in figures 

10(c)(i) and (iii) are not computed results but are the exact results 

obtained by a simple direct calculation based on considerations of 

equality of strain between stiffener and plate and overall equili- 

brium of each stiffener, as mentioned previously. The computed re- 

sults can be found in figure lO(a)(iii). 

It is interesting to see that figures 9(d) and 10(d) exhibit 

a pronounced effect of the eccentricity between stiffener axes and 

plate edges on the plate stresses. This effect is seen to be distri- 

buted throughout the plate and highly amplified near plate comers. 

In figure 10(d), for the shear-lag problem, the maximum plate normal 

stresses Nx and NY are changed enormously near the comers by intro- 

ducing the eccentricity between stiffener axes and plate edges. Owing 

to this important change, it is concluded that in shear-lag problems 
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especially, a careful study of the eccentricity between stiffener axes 

and plate edges is needed for a safe and economical design whenever 

such an eccentricity exists, and the plate stresses should be com- 

puted with the inclusion of this eccentricity. 

The effect of this eccentricity on the stiffener stresses is 

less important as indicated in figures 9(d) and 10(d). 

It is an attractive idea to try to replace a non-uniform 

temperature distribution by an equivalent uniform one. Figure 12, 

however, discourages such an idea, for the two types of temperature 

distributions are seen to produce entirely different types of stress 

distributions. A careful consideration of the actual temperature 

distribution in a plate for a practical problem is therefore 

advised. 

EXPERIMENTAL INVESTIGATION 

A limited experimental investigation to confirm the theoretical 

approach was felt to be desirable. Therefore an experiment was per- 

formed corresponding to the entirely symmetric shear-lag problem of 

figure 5(b) with rigid-jointed stiffeners. In the actual experiment 

tension loads were applied along one diagonal at a time, and the 

strains that would be produced by simultaneous loading at all four 

comers as in figure 5(b), were deduced by appropriate rotation and 

superposition. In the following subsections are given the detailed 

description of the test specimen, the test procedure, and a com- 

parison of the experimental and computed results. 
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Detailed description of test specimen. The test specimen was 

made of 7075-T6 aluminum alloy. It consisted of a 15 3/4" x 15 3/4" 

x l/16" square plate sandwiched between two identical four-sided 

square stiffener frames. The assembled specimen is shown in figure 

7(a), which also show the comer grip fittings used in applying 

tension loads along the diagonals. The stiffener frames are 

shopm in figure 8(a), and the manner in which--the plate was sand- 

wiched between them is shown in figure 8(b). The stiffener frames 

were machined from a solid plate so that near-perfect joint rigidity 

was automatically achieved without any special fittings. The two 

stiffener frames were' tightly bolted to the plate by l/8" diameter 

I steel bolts at 15/32" spacing along the centerline of the stiffeners. 

As shown in figure 8(b), narrow strip washers were inserted between 

plate and stiffener frames in order to achieve approximately a line 

of attachment between plate and stiffener along the latter's centroidal 

axis. Figure 7(b) shows in detail one of the comer grip fittings. 

The strain gage types and locations are shown in figure 7(a). 

Those gages distributed over the upper left quadrant of the plate 

were used for measuring plate normal stresses, those in the lower 

right quadrant for plate shear stresses, and those on the stiffeners 

for stiffener tensions and bending moments. Strain gages were used 

on one side of the plate only. 

Experimental procedure.. The Young's modulus and Poisson's ratio 

of the material were first determined. by means of tension tests on 
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two specimens cut in mutually perpendicular directions, from the 

plates out of which the stiffeners were machined. The following 

values of Young's modulus and Poisson's ratio were obtained, with 

no significant difference between the two orientations: 

. E = 10.66 x lo6 psi 

v = 0.33 

These values were employed in the two-dimensional plane stress stress- 

strain relations in order to convert the measured plate strains to 

stresses. 

The main specimen itself was tested in a universal tension 

testing machine between heads which gripped one pair of diagonally 

opposite grip fittings. Tension load was gradually applied and 

strain gage readings were recorded at 400-pound intervals until a 

maximum load of 2000 pounds was reached, The specimen was then 

unloaded and strain readings taken at the same loads during the 

unloading process in order to ascertain that the material had 

not been stressed beyond the elastic limit. For each gage, a 

straight line was fitted to the strain-versus-load data and the 

slope of this straight line was used to define the experimental 

value of strain per unit of applied load. Except for some gages 

in regions of low strain, there was relatively little scatter of 

the test points from a straight line. The same procedure was 

repeated with load applied along the other diagonal. By rota- 

tion and superposition, strains corresponding to the simultaneous 
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application of equal loads at all four comers were obtained. 

Comparison of experimental and computed results, For purpose 

of the calculations, the plate was considered to end at the bolt line 

(i.e., at the centerline of the stiffeners), thus making the dimension 

"a" 15 inches. The stiffener cross-sectional area was assumed to con- 

sist of all the shaded areas in figure 8(b), thus it included the 

stiffener area proper, the strip washer cross section, and the portion 

of the plate outside the bolt line, resulting in a value of A equal 

to 7/16 square inch. For computing the moment of inertia of the 

stiffener, the neutral axis for flexure was considered to coincide 

with the bolt axis (that is the very slight shift in neutral axis 

due to the plate area outside the bolt line was neglected), making I 

4 - equal to 0.01899 in. , and ti = 0. All four stiffener joints were 

considered as rigid. The stiffener effective shear area for com- 

puting shear stiffness was assumed as equal to the stiffener cross- 

sectional area, thus making A/As = 1.0. 

Cn this basis, calculations were made for the plate stresses, 

stiffener tensions, and stiffener bending moments in the experi- 

mental specimen. The computed results are represented by the 

solid curves in figure (13). The smail circles, triangles, and 

squares represent the corresponding experimental results. 

The agreement between theory and experiment is seen to be good. 
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CONCLUDING REMARKS 

A plane-stress analysis, together with some experimental 

confirmation, has been presented for a linearly elastic edge- 

stiffened rectangular plate subject to any equilibrium system 

of boundary loads and any temperature distribution, on the 

assumption that the elastic constants are independent of the 

temperature. The analysis is by means of Fourier series. 

This problem had been considered earlier (ref. l), with the 

stiffeners idealized as having finite extensional stiffness but 

negligible flexural stiffness and as being attached to the plate 

edges along their centroidal axes. In the present work, these 

idealizations have been dropped in favor of the following more 

realistic assumptions regarding the stiffeners: (i) The 

stiffeners have finite bending and transverse shear stiffness 

as well as finite extensional stiffness. (ii) At each comer, 

where two stiffeners meet., their end cross sections are joined 

by a coil spring to simulate any degree of joint rigidity from 

fully hinged to fully clamped. (iii) There may be eccentricity 

between the stiffener centroidal axes and the lines of attach- 

ment of stiffener to plate; similarly, there may be eccentricity 

between the stiffener centroidal axes and the lines of action of 

externally applied shear-flow loadings. (iv4 There may be 

temperature variation across the stiffener depth, producing a 
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thermal curvature as well as a thermal strain of the stiffener axis. 

Numerical examples have been worked out in detail in order to 

investigate the effect of the first three of these assumptions on 

the plate and stiffener stresses. Three types of loading were 

considered in these examples: a thermal loading consisting of a 

"pillow-shaped" temperature-rise distribution over the plate, a 

thermal loading consisting of a zero temperature rise for the 

stiffeners and a non-zero uniform temperature rise for the plate, 

and a force loading consisting of equal external tensions at the 

ends of all four stiffeners. In all of these numerical examples, 

the structure was square with symmetry about each centerline and 

each diagonal. 

The numerical examples revealed that finite stiffener 

flexural and shear stiffness , joint rigidity at the comers, and 

eccentricity between stiffener axis and line of attachment be- 

tween stiffener and plate can all have a significant effect on 

the plate stresses, especially near the comers, and on the 

stiffener tensions. The inclusion of these elements also leads 

to stiffener shears and bending moments which, of course, would 

otherwise not be present at all. 

Certain limiting cases of the present problem correspond to 

certain special cases of the problem in reference 2. As a check, 

the equations of the present work for a number of these limiting 

cases were shown to agree.with the corresponding equations of 
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reference 2. 

It is expected that the analysis and numerical results of the 

present paper, combined with engineering judgment, may provide 

qualitative and quantitative information of use to stress analysts 

and structural designers. 
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APPENDIX A 

SYMBOLS 

Remarks. (i) The subscript 1, 2, 3, or 4 on a symbol for a 

stiffener-related quantity (excluding comer moments) identifies 

the stiffener location as x=0, x=a, y=O, or y=b, respectively. 

Such symbols when appearing without subscript indicate the common 

value of the quantities these symbols represent. (ii) The 

Fourier coefficients of known quantities (loads, thermal strains, 

etc.) and the initially unknown stiffener-related quantities 

(stiffener tensions, bending moments, etc.) are generally repre- 

sented by capital letters, while the Fourier coefficients of the 

initially unknown plate-related quantities (internal stresses, etc.) 

are generally represented by small letters. (iii) Those symbols 

used in Appendix B for the combination of certain known quantities 

and Fourier coefficients are only defined where they are first 

used but not complied in this appendix. 

a plate dimensionin x direction; see 

a mn 

figure 1. 
* 

F.C. for the stress function F(x,p); see. 

equations (811) and (B85). 

a' a" a’ 11 allIr 

n' n' m ' m F.C. for F(O,y), F(a,y), F(x,O), F(x,b), 

respectively; see equations (B12) and (B84). 

* 
Here and in the rest of the list the symbols F.C. stand for Fourier 
coefficients in series expansions; 
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Al, A29 A39 A4 stiffener cross-sectional areas. 

stiffener effective cross-sectional areas for 

computing transverse shear stiffness in bend- 

ing parallel to the plate. 

plate dimension in y direction; see figure 

bmn 

b;, b'n', b':' b;" m 

B;, B;, B;", B'm"' 

I I, 
=,‘= C 

111 
C 

~111 

n n' m'm 

1. 

F.C. for a3F/ay3; see equations (B39) and 

(B73). 

F.C. for stiffener bending moments Ml(y), 

M2(y), M3(x), M4(x), respectively; see 

equations (B14) and (B98). 

F.C. for Nl(y), N2(y), N3(X)' N4(k)~ respec- 

tively; see equations (6). 

F.C. for Ny(x,y); see equations (B24) and 

(~66). 

F.C. for Ny(O,y), NY&y), Ny(x.O), Ny(x'b), 

respectively; see equations (B25) to (B28). 

p.late compliances; see equations (3). 

F. c. for a3F/ax3; see equations (B38) and 

(B72). 

F.C. for a4F/ax4; see equations (B35) and 

(B69). 

stiffener thermal strains; see figure 3. 

Cl' C2' C3' C4 

dmn 

e 

el W , e2 (y) , e3 (4 , 

e4 (xl 
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Emn 

F(x,Y) 

g mn 

1 ‘I 1111 
g;’ is;’ gn ’ gn 

Gl, G2, G3’ G4 

h 

%ln 

11’ 12’ 13’ 14 

hlrl 

kl, k2, k3, k4 

k 

J+ K;,K;", K;" 

plate thermal strains; see figure 3. 

C2(m+/a)4 f (C4 - 2C3) (mr/a)2(nr/b)2 + Cl(nnlb)4. 

Young's moduli for stiffeners. 

stress function for plate; see equations WI. 

F.C. for Nx(x,y); see equations (B29) and (B67). 

F.C. for Nx(x,O), Nx(x,b), Nx(O,y), N&(a,y), 

respectively; see equations (B30) to (B33). 

moduli of rigidity for stiffeners. 

thickness when plate is isotropic. 

F.c. for a4Way4; see equations (B36) and 

(B70). 

stiffener cross-sectional moments of inertia 

about centroidal axes perpendicular to the 

plane of the plate. 

F.C. for -Nxy(x,y); see equations (B34), 

(B92), (B94) and (B95). 

spring stiffnesses (moment per radian).of 

the coil springs.located at (O,O.), (a,Oj, 

b,b), and (O,b), respectively; see figure 2. 

common value of the above when all are equal. 

F.C. for K1(Y)' K2(Y)' K3(X), K4(x)' respec- 

tively; see equations (8). 
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LA' L"' L'm", L'm" 

my ny P, q summation indexes (integers). 

M upper limit on m and p. 

Ml (~1, M2 (Y) , M3 (xl , 

Mr, (xl stiffener bending moments about centroidal 

axes; see figure 4. 
- - a - 
Ml, M2s M3’ M4 comer moments produced by the coil springs at 

stiffener junctions (O,O), (a,O), (a,b), and 

(O,b), respectively; see figure 4. 

fi common value of the above when all are equal 

in magnitude. 

F.C. for (aey/ax)x=O, (aey/ax)x;;a,‘aex’aY’y=O ’ 

(aex/aY>y=bY respectively; see equations (10). 

summation index (integer). 

upper limit on n and q. 

n 

N 

Nl (~1, N2 (~1, N3 (4, 

N4 (x> external running tensions, force per unit 

length; see figure 1. 

Nx(x,y), Ny(x,~), 

Nxy (x,Y) plate stress-resultants, force per unit length; 

see figure 4. 

P summation index (integer) 

Pmn F.c. for a4F/ax2ay2; see equations (B37) and 

(B71). 
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Pl (Y> ' p.2 (Y> ' p3 Cd ' 

p4 (4 stiffener cross-sectional tensions; see 

figure 4. 

p’ p” p’ll, pill’, 

Y’ Y’ Y Y 
Pi' P$ P;", Pi" 

P 

4 

qY)Y qY)' qp' 

44 (4 

Q;, Q;, S'Y q" 

s I s 11 s 111’ s,llll 

n' n' m m 

i * i 
t1 ' t2% t3 ' 

. 

t4= 

t10 ’ t20, t30y 

t4° 

t’ tll t’ll tllll 

n' n' m , m 

stiffener end loads indicated in figure 1. 

common value of the above when all are 

equal in magnitude. 

summation index (integer). 

external shear-flow loadings; see figure 1. 

F.C. for ql(y), q2(y), 43W, 44(x)y rwec- 

tively; see equations (7). 

F.C. for the stiffener cross-sectional 

tensions; see equations (B13) and (B99). 

offset distances between stiffener centroidal 

axes and plate.edges; see figure 1. 

offset distances between the lines of action 

of external shear-flow loadings and the 

stiffener centroidal axes; see figure 1.. 

F.C. for the first derivatives of the 

stiffener cross-sectional tensions; see- 

equations (B21) and (B63). 
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Tmn 

T;, T;, T;", T'm"' 

u,v 

u,*(Y), u,*(Y) 

V 

v3*cx1, v4”w 

F.C. for a2ey/ax2 + a*e,/ay*; see equations 

(11) to (14). 

F.C. for thermal strain discontinuities 

between stiffeners and plate edges; see 

equations (9). 

x and y components of displacements in plate. 

x-wise displacements of points along the axes 

of the stiffeners located at x=0 and x=a, 

respectively. 

plate displacement component in y-direction. 

y-wise displacements of points along the 

axes of the stiffeners located at y=O and y=b, 

respectively. , 

1 II 1 I, VnO¶V ¶V ,111 
n m m F.C. for the stiffener transverse shears; 

1 
w,w 

11 W 1 II W ,111 

n n' m' m 

see equations (B15), (B96) and (B97). 

v1 (Y > , v* (Y) , v3 (x> , 

v4 (x> stiffener transverse shears; see figure 4. 

W F.C. for iI F/axay*; see equations (B40) and 

(B74). 

F.C. for the first derivativesof the stiffener 

bending moments; see equations (B22) and (B64). 

F.C. for a3F/ax2ay; see equations (B41) and 

(B75). 

Cartesian coordinates; see figure 1. 
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Y 

z’ zll z’ll, zllll 
n' n' m m 

ci 

6 
ij 

EX(X,Y), EY(X,Y), 

Yxy (%Y) 

El(Y), E*(Y) , E3(d 9 

P,(X) 

K1 (Y> , K* (Y) 3 K3 w 3 

k4(X) 

Cartesian coordinate; see figure 1. 

F.C. for the first derivatives of the 

stiffener transverse shears; see equations 

(B23) and (B65). 

coefficient of thermal expansion of plate 

and stiffeners in numerical examples. 

Kronecker's delta, unity when both subscripts 

are equal, zero otherwise.. 

plate total strains; see equations (3). 

stiffener total strains; see equations (1). 

stiffener thermal curvatures due to vari- 

ation of temperature through the depth of 

the stiffeners. 

temperature rise of plate center relative 

to the stiffeners, used in numerical examples. 

Poisson's ratio when plate is istropic. 
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APPENDIX B 

THEORETICAL ANALYSIS 

In this appendix are given the method and details of analysis 

for the problem described in the main body of this report. 

The analytical approach is similar to that of reference 1. 

However, in reference 1 the flexural stiffness of the stiffeners 

was assumed to be negligible. This single assumption simplified 

the analysis considerably, for the externally applied running 

tensions were then transmitted directly to the plate edges, and 

therefore the boundary values of the plate normal stress were 

known. The dropping of this assumption in the present analysis 

adds considerably to the complexity of the problem. It not only 

makes the plate normal stresses along the boundary unknown, but 

also introduces unknown comer moments at the stiffener junctions 

if these junctions are not hinged. To compensate for the increase 

in the number of unknowns, it is now necessary to invoke additional 

conditions of compatible deformation, which were not required in 

reference 1. These are the requirements that (a) the curvature of 

a stiffener and the curvature of the plate edge to which it is 

attached must be equal, and (b) the change of angle between two 

stiffener axes meeting at a comer must be equal to the shear 

strain of the plate at that comer. These conditions lead to as 

many additional equations as there are additional unknowns. 

The details follow. 
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Basic equations. With u(x,y) and-v(x,y) denoting the x- and 

y-components of infinitesimal displacement, the strain-displacement 

relations for the plate are (also see eq. (3)) 

Equations (Bl) imply the following compatibility condition on the 

strains 

The plate equilibrium equations, namely 

imply the existence of a stress function F(x,y) such that 

@l) 

032) 

(B3) 

(B4) 

Elimination of the strains in equation (B2) by use of equations (3) 

and then the stresses by use of equations (B4) leads to the following 

form of the compatibiIity condition, in-which account is already taken 

of the equilibrium and stress-strain relations: 

G (B5) 

Considering now infinitesimal lengths of the stiffeners as free 

bodies, and utilizing equations (B4) to express N 
xy' Nx and NY at lzhe 
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I plate edges in terms of F, one obtains the following equilibrium 

equations governing the longitudinal variations of the stiffener 

cross-sectional tensions, bending moments, and transverse shears: 

The sign convention for the stiffener tensions, bending moments and 

shears is shown in figure 4. 
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Integral attachment between the stiffeners and the.plate edges 

implies equality of their longitudinal strains along the lines of 

attachment and leads to the following additional set of conditions, 

in which account is taken of the strains of the stiffeners due to 

bending and non-uniform temperature distribution across the stiffeners: 

In these equations, the terms on the right-hand side are from equations 

(3). Substitution of equations (B4) yields 

57 

..-- _~. _-. -_..-- 



Integral attachment between the stiffeners and plate edges also 

implies equality of their curvatures. With the use of this condition, 

equations (4) and (5) together with (B4) lead to the following 

equations of compatible curvatures between plate edges and 
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The problem can now be stated essentially as follows: Solve 

equations (B5) to (B9) and (BlO) for F, Pi, Mi and Vi (i = 1,2,3,4) 

subjected to boundary conditions arising from the prescribed forces 

at the stiffener ends and the prescribed distributed loadings Nl 

through N4 and ql through q4. In the following sections a formal 

solution to this problem will be obtained in terms of Fourier series. 

Series assumptions for F(x,y), Pi, Mi and Vi. In the region o<x<a, 

o<y<b of the plate, excluding the edges (x = o, a) and (y = o, b), the 

stress function F(x,y) will be assumed to be representable by the 

double Fourier series 

(B11) 

with as yet unknown coefficients. Equation (Bll) is, of course, not 
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valid at the edges; however, there the-values of F can be represented 

by the single Fourier series 

Equations (B12) are again not valid at plate corners. At the corners 

F is assumed to be single-valued. It will be seen later that the 

corner values of F do not have to be determined. 

Similarly, the stiffener tensions, bending moments, and transverse 

(B13) 

(B14) 
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The coefficients in the series in equations (Bll) to (B15) are 

related to the left-hand sides through the usual formulas: 

0316) 

(B17) 

ml81 

(BE’) 

0320) 

Series for the derivatives of F(x,y), Pi, Mi and Vi (i = 1,2,3,4). 
~- _-- - - --.-~ ~~~ _ 

The derivatives appearing in equations (B4) to (B9) and (BlO) will also 

be assumed expressible in series as follows: 



i 
6322) 

\ (~23) 

J 
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where 



(B45) 

0346) 

(B47) 

(B-W 

wt9) 

(B50) 

(B51) 

(B52) 

(B53) 

054) 

(B55) 

(B56) 

(B57) 



0358) 

(-9) 

(ml) 

0361) 

0362) 

The coefficients appearing in the.series for the derivatives 

(equations (B21) to (B41)) are , of course, not independent of the 

coefficients in the series for the basic quantities (equations (Bll) 

to (B15)). The former can be expressed in terms of the latter by 

means of integrations by parts in the right-hand sides of equations 



f& -ip-- 

I 
0564) 

1 
(B65) 

NO 
z, = 2g &j’Q 

Similarly, two partial integrations with respect to x in equation (B45) 

give 

TWO with respect to y in equation (B50) give 

G366) 

(~67) 
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In equation (B55) partial integration with respect to x, followed 

by partial integration with respect to y in both of the resulting 

terms, gives 

c??L = "-~~~-~o>~~-~"~f~~,~-~~~~f4~ -c4yfq.Q 

-f Fro/ o>]+(y) Ii&Q [f+J@iG~ QZ] 

km- + (+I) 23.4Q; 
- Q/l +(F*)(-? de,- c0al 

in which single valuedness of F at the corners has been assumed. 

Proceeding in a similar fashion with the right-hand sides of 

equations (B56) to (B62) one obtains 

(B70) 

(B73) 
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It should be noted here that the stiffener end tensions P,(o), 

Pi(b), P,(o), P2(b), etc. appearing in equations (B63) are the limiting 

values of Pi(y), P2(y) etc. as stiffener ends are approached. They 

are in general not equal to the externally applied stiffener end loads 

P' P", P'", P"", etc. 
Y'Y Y 

because of the mutual reaction forces exist- 
Y 

ing at the points where stiffeners meet (see fig. 4). me P,(o), 

Pi(b), etc. are related to the applied loads P', P", etc. by the 
Y Y 

following equations: 

Similarly, the stiffener end bending moments Ml(o), Ml(b), M2(o), 

M2(b), etc. in equations (B64) are the limiting values of Ml(y), 

M2(y), etc. as the stiffener ends are approached. When there is 

essentricity of attachment between plate edges (therefore corner 

hinges) and stiffener axes, these stiffener end moments will not be 

equal to the comer moments k 1, K2, etc. produced by the coil springs. 
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The two sets of moments are related as follows: 

Boundary values of .F. From equations (B4) (using subscripts on 

F now for convenience to denote partial differentiations), 

Therefore 

Substitution of y = b in equation (B78) gives 

which result,substituted back into equation (B78) gives 

079) 
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Thus the variat5on of F along the edge x = o has been expressed in 

terms of two constants F(o,o), F(o,b) and the boundary stress resultant 

Nxb,y> l Replacing Nx(o,y) by its series expansion, equation (B32), 

and carrying out the integrations indicated in equation (B79) give 

Going through a similar procedure for each of the remaining edges, one 

(=31) 

(B82) 

and 

@84) 



'Thus, the Fourier coefficients in equations (B12), and therefore the 

boundary values of F, have been expressed in terms of the four unknown 

constants F(o,o), F(o,b), F(a,o), F(a,b) and the unknown coefficients 

g;", ,;lll, $11, c;I1l related to stresses along plate edges. 

Substitution of series into the basic equations. Through equation 

(B63) to (B75) all the unknown coefficients in the derivative series 

are expressed in terms of the basic unknowns a * s' s" sll I , s I 1 I I 

mn' n' n ' m m ; 

b;, b;', b;", b;"'; v;, v~', v~", $"'; CA, c~', $I', c'm"'; 

g;, g;‘, .$“, ,y; and F(a,b), F(a,o), F(o,b), F(o,o); and in terms 

of the end values of Pi, Mi and Vi (i = 1, 2, 3, 4). Relationships 

among these basic unknownswill now be obtained by substituting the 

assumed series into the basic equations (B5) to (B9) and (BlO). 

Considering first equation (B5), substituting into it the series 

expansions frown equations (11) and (B35) to (B37), and eliminating 

e i mn' mn' and Pm, through equations (B69) to (B71), one obtains: 
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Solving this equation for amn and eliminating a:, a:', a"', and a:"' m 

through equations (B82), one obtains 

where 

Thus, through the compatibility equation, the unknown amn have been 

expressed in terms of a smaller class of unknowns, namely the c', n 

C 
I I 

n 
, c”‘, c’!lI, g’ 

m m m, g:', g:", and g;"'. 

Turning now to the equilibrium equations for the stiffener 

tensions, (~6), substituting the series from equations (B21), (B34), 

and (7) and utilizing equations (B63), one obtains the relationships 

0387) 

(B89) 



@go) :-&r-r= 0,!2 . - --,NJ 
The equations of this group with n = o and m = o will be written 

separately. From equation (B68), in conjunction with (B84) and (B85), 

it is first noted that 

(B93a) 

(B93b) 

(B93c) 

(B93d) 

These equations serve to establish four different forms of expression 

for joo, as follows: 
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(B94a) 

(B94b) 

(B94c) 

(B94d) 

All the four expressions will be used at different times in the later 

analyses. 

Equations (B92) and any one of (B94) give expressions for those 

unknown j mn having at least one subscript zero. An expression for 

those jmn with neither subscript zero can be obtained by substituting 

into equation (B68) the expressions for a' a", a"', a"" and n' n m m 

a mn from equations (B84) and (B85). The result is: 

The equations of equilibrium for the stiffener transverse shears, 

(B8), will now be considered., Substituting the series from equations 

(B23), (B27), (B28), (B32), (B33) and (6) into equations (B8), and 

considering equation (B65), one obtains: 
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(Bg2), (BgS), (B96), and cBg7) One 
rhus, with the use Of equations 

obtains 

:398) 
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Reduction in numberof _~~. -. simultaneous equations. Equations (~87) 

to (B90) with the n = o and m = o equations excluded, and equations 

(BlO) with their various terms replaced by series expansions, can 

now be used to obtain eight systems of simultaneous equations in 

which the c' C” C 1 , 1 , = ,111 I t I 
n' n' m m ,g;lg;'lgn 3 and gi"' are the only 

unknowns (V,(o), Vi(b), zl, i"i2, etc. are assumed to be known for the 

time being; their expressions, in terms of the c's and g's, will be 

given later). The first four of these systems of equations are 

obtained from equations (B87) to (B90) when s:, s:', s:", sit", 

jmn' P,(o), Pi(b), etc. and Ml(o), Ml(b), etc. are eliminated with the 

aid of equations (B76), (B77), (B95) and (B99). They are as follows: 



(B102) 

c/77=42,----,#Q 
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where 

-f-d-/q 

f&+2,- ---,&?t (B103) 
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I- 

The remaintng .four systems of .equations are obtained from equations 

(BlO). First, the series expansions from equations (6), (8), (lo), (B14), 

(B27), (B28), (B32), (B33), and (B38) to (B41) are substituted into 

equations (BlOj which results in 

Then xmn wmn dmn. b and b' through b:' are replaced by their 

express&s ik equLti:i (B72)nto (B75) and (B98) , after which a , j 

and a' n through a:" are eliminated by means of equations (B85), (::2), 
ImT* 

(B95) and (B84). The following four systems of equations result: 
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cn=42,- - - -,h/> 
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in which 

- 
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Equations (BlOO) to (B103) and (B105) to (B108) contain 

4(M+N) simultaneous equations which serve to determine the 4(M+N) 

unknowns,, namely, c1)1, c", c"', c"", g' 111 

n m m m' Eq, gn 9 and gA"'0 

These eight equations could be further reduced to four equations if 

equations (BlOO) and (BlOl) together with equations (B105) and (B106) 

were solved for each c' C” n' n ' gn "' and glY" in terms of all the g:, 

g:', c'm", and CA"'. In place of equations (BlOZ), (B103), (B107) 

and (B108) a new set of 4M simultaneous equations would be obtained, 

involving only 4M unknowns (g', gi', ci" and ci"). While fewer 

unknowns would have to be solved with the use of such reduced 4M 

simultaneous equations, the former 4(M+N) simultaneous equation, (BlOO) 

to (B103) and (BlO5) to (B108), will be retained and employed in this 

report because of its greater simplicity in the form of the coefficients. 

End shears of -stiffeners. Moment equilibrium of the stiffener 

located at x = o will now be considered. Referring to figure 6, 

taking moments about point 0, and applying equations (B77), one obtains 
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Substituting the series expansions from equations (6), (7), (B32) 

and (B34) into this equation and carrying out the integrations 

indicated, one gets 

-4, W+ $ v, (0) - g 7 (0) = f (&*, (-I)“( 6; - 9;) 
n=t 

+ ti f jmo - t,O Q; + +- (r"t,- ti+) 
m=o 

(B109) 

In view of equations (B76), equations (B94a) to (B94d) may be rewritten 

as follows: 

(BllOa) 

m :I 

mq 

n=t 

(BllOc) 
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Substitution of equations (BllOa) and (B92) into equation (B109) 

yields 

Writing the moment equilibrium equations for the stiffeners 

located at x = a, y = o, y = b, and going through a similar procedure 

but using equations (BllOb), (BllOc), (BllOd), respectively, for 

eliminating joo, one obtains the following equations for V2(b), V3(a), 

and V4(a) analogous to (Bill): 

(B114) 
Wl=l 

Equations (Bill) to (Bll4) give the expressions for four of the 

eight stiffener end shears. The remaining four end shears, namely 

V,(o), V,(o), V,(o) and V,(o), can be obtained in a similar manner 

by taking moments about the other end of the stiffener, or can be 
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obtained by using equations (Bill) to (B114) and the equilibrium 

equations of stiffener lateral forces. The resulting expressions are 

(B115) 

(B116) 

(Bll7) 

(B118) 

Eliminating V,(o), V,(o), etc. in equations (BlOO) to (B103) and 

(BL05) to (B108). The expressions for stiffener end transverse 

shears, equations (Bill) to (B118), can now be employed to eliminate 

the V,(o), V*(o), etc. involved in equations (BlOO) to (B103) and 

(B105) to (B108). These equations then take on the following form: 
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(B119) 

+A 
ab c 

(B120) 

( n=r,t,-,., 9 
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(m=t,z,*y PI) 

(FL= ‘J, “‘, M) 
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(B124) 
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(m= J, z, , t ti > M) (B126) 
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in which 
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Thus the stiffener end shears, which were considered known 

in the earlier analysis for the sake of convenience, have now been 

eliminated from the basic equations. If the corner moments, Fl, 

E2’ i;?3 and E4 are now also taken into account as unknowns, equations 

(B119) to (B126) contain 4M + 4N-.+ 4 unknowns, namely, CA through 

clIl~ 
m 9 g; through g:"' and 'zl through z4, but only 4M + 4N 

simultaneous equations. Four more equations are therefore required. 

Thesesfour equations are developed in the following subsection. 
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Corner moments. The centroidal axes of any two adjacent stiffeners 

are at 90° to each other before loading. Owing to the development 

of end shears and corner moments, a small change of this angle will 

occur during loading. This change of angle is given by expressions 

(A) in the main body. Similarly, the plate edges at each corner, 

which make an angle of 90° before loading, experience a small change 

of angle during loading because of the plate shear stress resultant 

N at the corner, 
XY 

These angle changes are given by expressions 

(B) in the main body. Equating expressions (A) and (B) (because of 

integral attachment between stiffeners and plate), one obtains 

I 
(B127) 
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Substitution of the series expression,equation (B34), for the right 

side terms of these equations yields 

(B128) 

Using equations (Bill) to (B118) to eliminate V,(o), V2(o), etc. and 

equations (B92), (BllO), (B95) to eliminate joo, jmo, jon and jm, 

one can convert equations (B128) to thn following final form: 
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(B129) 

(B131) 



t r "'I 
(B132) 

where 
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Equations (B129) to (B132) can be written in a matrix form and 

the left side will have a symmetric coefficient matrix for Ml 

through E4 which reads 

8’ 

4’ 

A’ 

4 

4’ 

a” 

A’ 
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If the inverse of this matrix exists one can always find an expression 

for each of the corner moments cl, E2, z3, and z4, in terms of the g's 

and c's. These expressions can then be employed to eliminate all the 

corner moments appearing in equations (B119) to (B126). Eight new 

groups of equations result. These eight new groups of equations 

contain 4M + 4N simultaneous equations and exactly 4M + 4N unknowns. 

A solution for each of the unknowns is then possible. However, it is 

not intended in this paper to give the expressions for Fl through E4 

and to eliminate them in equations (B119) to (B126). Although this 

can be done by straight forward algebraic operations, the process 

is very tedious. Later on, when some special cases are considered, 

equations (B119) to (B126) and (B129) to (9132) will be much simplified. 

In such cases, an expression for each of the zl through z4 will be given. 

Evaluation of plate s.trsses - stiff.esr tensions, bending moments I --~ 

and transverse shears. Theforegoifig analysis can now be concluded as 

follows: The values of c's, g's and Fl through z4 can be obtained 

from the system of simultaneous equations (B119) to (Bl26), and (B129) 

to ($132). With these values known, equations (Bill) to (B118) give 

the stiffener end transverse shears, V,(o), Vi(b), etc. The values 

of the stiffener end tensions, P 1 (o), P 1 (b), etc. and the stiffener 

end moments, Ml(o), Ml(b), etc. are then given by equations (B76) 
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and (B77), respectively. Having determined the above quantities, 

equations (B98) give the'Fourier coefficients b:, bi', b;", b:"', 

equations (B99) the s;, s;', si", si"', equations (B96) and (B97) 

the VA, VA', VA", VA"', and equations (B92), (B95), and one of the 

equations (B94), the j,. Then equations (B13) can give the stiffener 

tensions, equations (B14) the stiffener bending moments, equations 

(B15) the stiffener transverse shears, and equations (B24) to (B34) 

the plate stresses except the normal stresses at plate corners. The 

evaluation of the corner values of Nx and NY is given in the 

following subsection. 

Corner values of Nx and N . By using the first of equations (B9) 

and letting y = o, one obtains 

Similarly, one can write 



.p3 (0) + M, tk 
% E3 [ Es r3 

+X 5 (0) 1 3 f e,W = e&o) +q N,b,oJ -c., N,,W~ 

The above eight equations serve to establish the corner values of the 

plate stress resultants Nx and N 
Y 

in terms of the known thermal strains, 

and the end values of the stiffener bending moments and tensions. 

Solving the above equations one obtains, 
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CB133) 
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Special case: 
b symmetry about y = 2. If the structure, loading 

and thermal strains are symmetrical about the line y = $, then a 

corresponding symmetry obtains in the stress function F and in the 

plate and stiffener stresses. Consequently one may set 

h(B134) 

In place of equations (B119) to (B126) the following system results: 
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2 =-- 
a 

0U35) 

03137) 



(B139) 
4/ 6 _--- 

c+ E21, ?i9 
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It should be noted that in this special case equations (B121) are 

identical to equations (B122) and equations (B125) are identical to 

equations (B126). 

The eight systems (or 4M + 4N) of equations, (B119) to (B126), 

have now been reduced to six (or 2M + 2N + 2). A similar procedure 

also reduces the four equations, (B129) to (B132), to the following 

two equations, because the symmetry makes equation (B131) identical to 

(B130) and (B132) identical to (B129): 

110 



Equations (B135) to (B142) constitute 2M + 2N + 4 simultaneous 

equations with exactly the same number of unknowns, namely, c' c", n' n 
c" 1 Ill 

m' g;, Pi', isn , and z 1, M2. The other basic unknowns, ci"', 

g;' and z 3, E4 are given in the equations (B134). 

Special case: b symmetry about y = 2 and x = ;O A further- 

reduction in the number of simultaneous equations results if the 
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structure, loading, and thermal strains are symmetrical about both 

centerllnes, y = - and x = a b 
2 2' In this case one may write, in addition 

to equations (B134), the following conditions: 

Using the above equations and observing that the equations 

(B135), (138) and (B141) are now identical to equations (B136), 

(B139) and (B142), respectively, one may reduce equations (B135) to 

(B142) to the following systems: 

b(B143) 
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(B144) 

t %7= /, 3,. , M> (B145) 

(9?=“3,.-..,d> (B146) 
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(B147) 

The last equation may be used to eliminate the K involved in 

equations (B144) to (B147), provided that the spring constant k is 

lot infinity. If this is done, the following system of equations 

:esult: 
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07=43,----JN> (B149) 

_ 0, d AJC<-? = R,,, -;g&7-. 13 r 
/ 

, cm=/,3.--;M) (B150) 
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When k approached infinity, which implies rigid-jointed stiffeners, 

equation (B148) can no longer be employed to eliminate the E in 

equations (B144) to (Bl4-7). In such case no simplification for the 

basic equations is possible, and equations (B144) to (B148) should be 

solved simultaneously for the c's, g's and E. 

Special case: symmetry about x = a/2, y = b/2, and the plate 

diagonals. If the structure, loading and thermal strains ze entirely 

symmetric, that is to say, symmetrical about the two centeriines- 

x = a/2, y = b/2 and the plate diagonals, the following relations 

exist: 

* . 
a=d ; A,=/, z/13= ,6$ =,,tj ,. I; =L =T, = Tc = z,. $"=&=&=Zf=t; 

f'= r,"=f,'= q=t"; 7@,=A:=gj=A,=ie; <=Ep&=&q c=c,; 

G,=6,=&c;l, =g; /&=AL=As3 =/4s,=j&;4&h+= &g'J~=-62;N 

f~ Z, ado/ 4nd M= n/ j ~~' = ~~~ = ~~=d7nuy= ~ $~ n eva; 

qL p$j = pa": ry "& = yq' 3 p, " = pq "' = p* 'O = p j 

/i3 = r;i, = M, =34=/q; 7m"=oJp m 0r 27 evefl,- 

4' = & = B; = B,“” ffl n oJ.y Ad H=/r/; 

s?’ = B/f= s,” = /3p fsr n eve4 1 

T, ’ = T,” = T,“’ = T,‘“’ for ~ odd pnd M = /1 j 
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It is observed that when the above relations are considered, 

equations (B144) and (B146) are identical to equations (B145) and 

(Bl47), respectively. The system of equations (B144) to (B148) 

then reduce to the following form: 

(77=/,3,-.. , NJ (B154) 
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41 a =--- -&7-z/ 
c;EI nz CA=/, 3, ---,M) (B155) 

Meanwhile, equations (B153) can also be simplified as follows: 

Again, if k approaches infinity equation (B156) can not be used 

to eliminate the F in equations (B154) and (B155) and therefore. 

equations (B154) to (B156) have to be solved simultaneously for 

g& CA" and E. If k vanishes,(implying hinge-jointed stiffeners), 

equations (B154) and (B155) alone are solvable for g: and CA" by 

setting M equal to zero. Equation (B156) then becomes unnecessary. 

For any finite value of k equation (B156) can always be used to eliminate 

the z in equations (B154) and (B155). If this is done, one has 
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Special case: b antisymetry about y = 2. Similar to the symmetrical 

cases discussed above a simplification exists if the loadings and thermal 
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strains possess certain antisymmetrical properties but the structure 

possesses corresponding symmetrical properties. For example, if the 

b structure is symmetrical about the centerline y = z but the loadings 

and thermal strains are antisymmetric about the same centerline, one 

can write immediately the following relations: 

Substituting the above conditions into equations (B119) to (B126) 

and leaving out the equations (B122) and (B126), which are now 

identical to equations (B121) and (B125), respectively, one obtains 

the following simplified system of equations: 
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- ‘1 

c* s 2/d, ‘-.. 

(~161) 

(~162) 
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t 5*=2,4, ---. ,h/) 
(B164) 
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Using equations (B159) and writing out the full expressions for 

0: $, etc., one can also rewrite equations (B129) and (B130) as follows: 
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while equations (B131) and (B132) become identical to the above two 

equations. 

Equations (B160) to (B167) may be solved simultaneously for 

C’ 
- - 

n, CA', CL", gi, g:", g:"', and Ml, M2, or one may use equations 

(B166) and (B167) to eliminate E 1 and fi2 in equations (B160) to (B165), 

and then solve for c' c" c"', g;, g'", and g"" . n' n' m n n 
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Special case: a anti-symmetry about x = 7, y =.$. If the structure 

is symmetrical about the centerlines x = : and y = 1 but the loading 

and thermal strains are antisymmetrical about the same centerlines, 

then, in addition to equations (B159), one can write 
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With the use of equations (B168), equations (B160) to (B167) 

may be reduced to the following simpler system: 

4 
+a6 (n=2,4,--.,d) 

(B169) 

(m=2,4, . -,r4) 

(B170) 

(B171) 
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(B173) 

Having established the equations (B175) to (B179), the method of 

solving these equations for the key unknowns is essentially the 

same as before. As in the previous special cases, the last equation 

may be used to eliminate the F in equation (B175) to (B178). 
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Special cask: antisymmetry about x = a b 
2' Y = T', SymmeQy Aout 

- _--.- 

plate diagonals. If one imposes the symmetry of the structure, 

loading and thermal strains about the plate diagonals into the last 

(B174) 



Substituting the above relations into equations (B169) to (B173) 

and discarding duplicated equations, one obtains 

( 7/=3,4,-, - ,M> 

(B175) 

( n=z,4,- - . ., fy> 

(~176) 
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Equations (B175) to (B177) may be solved simultaneously for gi, CA" 

and z. One may also use equation (~182) to eliminate M in equations 

(B175) and (B176), which results in 

131 
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where 

Limitinp case of negligible t 11 s. If the plate is attached to 

or very close to the centroidal axes of the stiffeners, the values of 
. . 

tll, tzl, etc. may be considered zero. Consequently, all the equations 

obtained above can be simplified. For example, equations (B154) to 

(B156) of the entirely symmetrical case can now be written in the 
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Similarly, equations (B175) to (B177) of the entirely anti- 

symmetrical case become 

(B182) 

(B183) 
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Limitinp case of-large stiffener bending and shearing stiffnesses. 

The case in which some edges of the plate are forced to remain straight 

can be handled by allowing the bending and shear stiffness of the 

corresponding stiffeners to approach infinity. Inasmuch as the 
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simplification of the equations developed above for this limiting 

case is straightforward (one merely replaces by zero all terms 

involving the inverse of the bending or shearing stiffness of those 

stiffeners to be held straight), the simplified equations will not be 

given except for two special cases, both with KA = Kk' = K"' = m 

=Krr' = O: (a) Double symmetric, two opposite stiffeners perfectly 

rigid in flexure and shear, the other two stiffeners perfectly 

flexible, t?j = 0. (b) Entirely symmetric, all four stiffeners 

perfectly rigid in flexure and shear. These two cases were selected 

because they correspond to problems solved by another approach in 

reference 2 and therefore provide the opportunity for a check. 

For case (a), substitute 

into equations (B144), (B146), and (B145) to obtain 

(~186) 
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In equations (B147), first let ti = t; = o, then multiply each side 
- 

bY E313, and finally let E313 = o and M = o to obtain 

Substituting this last equation into (B186), (B187) and solving for 

CA and gi", the following equations result: 

(B189) 
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(B190) 
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Equations (B189) and (B190) can now be substituted into equations 

0=38), which become 

(B191) 

Equations (B191) can now be compared to equations (D57) of reference 

2. Although different notations are used, they are found to be 

equivalent. 

For case (b), let 

Substituting into equations (B154) to (B156), one has 
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=CL (B193) 

p=C3_---;MJ 

(B194) 
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For F = o, which corresponds to the case of hinge-jointed stiffeners, 

equations (B192) and (B193) are found to be equivalent to equations 

(E34) and (E35) of reference 2, where identical limiting and special 

conditions were assumed. 

Limiting case of small bending-stiffness. The case in which the 

i stiffener bending stiffnesses are zero and tc = t: = o (c=1,2,3,4) 

was analyzed in reference 1. The same case maybe obtained as a 

limiting case of the present analysis by considering the stiffener 

junctions to be hinged and allowing the stiffener flexural stiffnesses 

to approach zero. The resulting equations can be compared with those 

of reference 1 to provide another check on the correctness of the 

present analysis. 

To arrive at the limiting case just described, let 

(B195) 

in equations (B123) to (B126), multiply by ElIl in (Bl23), E212 in 

(B124), E313 in (B125) and E414 in (B126), and finally set 

E,I,= 0 (o(= -1AW 
The following simple relations result: 
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Substituting (B195) and (B196) into equations (Bill) to (B118) one 

has 

consequently, from equations (~76) 

By virtue of equations (B195) to (B197), equations (B119) to 

(B122) degenerate to the following system: 
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(B198) 
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where 

and 

with Kmn given by 
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In reference 1 the plate external distributed tensions are 

assumed to be tcansrhitted directly to the sheet edges. This condition 

is now given by equations (B196). The last four equations, (B198) to 

(B201), are found to be identical to equations (B61) to (B64) of 

reference 1 except that the loading terms RA, RA', Ri", RA"' in 

reference 1 are now denoted by Ui, UA', Ui", and Ui"', respectively. 

This coincidence is considered as another check on the correctness of 

the equations presented in this paper. 



APPENDIX C 

METHOD OF SlJPERPOSITION 

In this appendix it will be shown that the shear-lag problem 

(Figure 5(b)) and the discontinuous-temperature-distribution 

problem (Figure 5(c)) are very closely related. In particular, it 

will be shown that the stresses for either one of these problems 

can be obtained by superimposing a very simple stress distribution 

on the stresses of the other problem. For simplicity this will be 

demonstrated only for the case of the entirely symmetric structure 

with isotropic plate and stiffeners and plate of the same Young's 

modulus; the same reasoning can be extended with no difficulty to 

nonsymmetric structures. 

The argument is developed with the aid of figure 14. Problem 

A represents the discontinuous-temperature-distribution problem, 

in which the stiffeners have a temperature rise T of zero, the 

plate a uniform temperature rise of 8, Problem B represents the 

same structure with the same temperature rises, but in addition 

stiffener end tensions of magnitude a&U. These tensions in 

Problem B are so chosen as to produce stiffener strains of magni- 

tude a9 in complete compatibility with the plate strains of 

the same magnitude. In view of this compatibility, the plate 

stresses are all zero in Problem B, while the stiffener tensions 

are uniform and of magnitude a0A.E. Problem C represents the 
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shear-lag problem of figure 5(b) with stiffener end tensions of 

magnitude -aME. It is easily seen that by superimposing the 

loads and temperature riserof Problems B and C, .one arrives at 

the loading condition (purely thermal) of Problem A. Consequently, 

if the stresses for the shear-lag problem (Problem C) are known, 

one immediately obtains the stresses for the discontinuous-tempera- 

ture-distribution problem (Problem A) by superimposing the very 

simple stress distribution of Problem B. 
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Figure l.- Structure and loading 

Figure 2.- Comer condition 
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Figure 3.- Thermal strains 
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Figure h.- Plate and stiffener force8 and stiffener bending 
moments and transverse shears (externally applied 
loadings omitted). 
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Stiffener temperature=O. 
Plate temperature' 
= Bsin(ax/a)sin(ny/a). 
Coefficient of expansion=a; 

(a) Pillow-shaped temperature 
distribution. 

- 

a 
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Stiffener temperature= 
plate temperature=constant. 

Stiffener temperature=O. 
Plate temperature=B. 

(b) Shear lag. 

- 

Coefficient of expansion=a. 
‘(c) Discontinuous temperature 

distribution. 

Figure 5 .- Problems considered for numerical examples 
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Figure 6.- Free body diagram of the stiftener at x = 0. 
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Figure 7.- Experimental specimen. 
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Figure 8.- Stiffener details. 
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Figure 9.- Dimensionless plate stresses, stiffener,tensions, bending moments and 
transverse shears due to pillow-shaped temperature distribution; 
v = 0.3; 4ah/n*A = 1.0 . 

(a) Comparison of results for rigid-jointed stiffeners(solid curves) and 
hinge-jointed stiffeners(dashed curves); ha311 = 10,000; A/A, = 1.0; 
+&i/a; = 0. (problems 2 and 8) 
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Figure 9.- Continued. 
(b) Comparison of results for different stiffener bending rigidities;. 

A/A, = 1.0; ti/a = 0; rigid-jointed stiffeners. 
(i) ha3/1 = 110,000(eolid curvee) and ha3/1 = lO,OOO(dashed curves). 

(problems 1 and 2) 
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Figure g(b).- Continued. 
(ii) ha3/1 = O(solid curves) and ha3/I = 500(dashed curves). 

(problems 4 and 3) 
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Figure 9.- Continued. 
(c) Comparison of results for finite stiffener transverse shear stiffness 

(A/As = 1.0 , solid curves) and infinite stiffener transverse shear 
etifmess(A/A, - 0, dashed curves); ti/a = 0; rigid-jointed stiffeners. 

(i) ha3/1 = 110,000 . (problems 1 and S) 
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Figure g(c).- Continued. 
(ii) ha3/I = 0 . (problems 4 and 6) 
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Fi&i$Pe 9.- Continued. 
(.d) Comparison of results for zero eccentricity(ti/a = 0, solid curves) and 

finite eccentricity(ti/a = ,02'72, dashed curves) between stihfener 
centroidal axes end plate edges; has/I = 10,OOOf A/As = '1.-O; rigid- 
jointed etiffenera. (problems 2 and 7) 
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Figure lO.- Dimensionless plate stresses, stiffener tensions, bending moments 
and transverse shears due to stiffener end forces(shear lag 
problem); v = 0.3; 4ah/s2A - 1.0 . 

(a) Comparison of results for rigid-jointed stiffeners(solid curves) 
and hinge-jointed stlffenere(dashed curves); ti/a - 0; and 

(I) ha311 - 110,000; A/As - 1.0, (problem 9 and 15) 
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Mgure 10(a).- coi‘ltinued. 
(ii) he?/1 - 0; A/A8 1'1.0 , (problem 12 and 1.6) 
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Figure 10(a).- continued. 
(iii) ha3/I'* 0; A/k; - 0. (problems 13 and i8) 
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Figure 10.0 continued. 
(b) Comparison of results for different stiffener bending rigidities; 

A/As = 1.0; ti/a - 0. 
(i) ha3/I - llO,OOO(solid curves) and ha3/I - lO,ooO(dashed 

curves) ; rigid--Jointed stiffeners. (problems 9 and 10) 
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curves) and ha3/I * 500(dashed curves); 
:iffeners. (problems 12 aid 11) 
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Figure 10(b).- continued.. 
(iii) ha3/I - 110,000(eolid curves) and ha3/I - O(daehed curves); 

hinge-jointed stiffeners, (problem 15 and.16) 
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lU.- continued. 
(c) Comparison of results for finite stiffener transverse shear stiffness 

(A/As - 1.0, solid curves) and infinite stiffener transverse shear 
stiffness(A/As - 0, dashed curves); t I /a - 0; and 

(I) ha3/I - 0; rigid-jointed stiffenere. (problems 12 and 13) 
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(ii) ha3/I - 110,000; 
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Figure 10(c).- continued. 
(iii) ha3/I - 0; hinge-jobted etiffeners. (prol+mel16 and 18) 
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Figure lo!- continued. 
(d) Comparison of results for zerd eccentricity(t'/a = 0, solid curves) 

and finite eccentricity(ti/a - .d272, &as$ed curves) between 
stiffener centroidal axes and plate edges; ha3/I - 10,0003 
AlAB - 1.0; rigid jointed stiffener@& (problem& 10 and 14) 

. 
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Figure 11.0 Dimensionless plate stresses, stiffener tensions, bending moments 
and transverse shears due to discontinuous tempeeature distribution; 
v = .3; 4ah/r2A - 1.0; I t /a - 0; rigid-jointed stiffeners. 

(a) Comparison of results for different stiffener bending rigidities, 

A/As - 1.0. 
(i) ha3/I - 11O,000(solid curves) and ha3/I - 500(dashed curves); 

(problems 19 and 20) 
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Figure 11(a).- continued. 
(ii) h&i6 - 0. (problem 21) 
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bending moments and transverse shears for pillow shaped temperature 
'distribution(golid curves) and discontinuous temperature distributio 
(dashed curvee); ha311 - 500; 4ah/n2A 1.1.0; A/A 

S 
- 1.0; ti/a - 0; 

V - l 3; rigid-jointed etiffenerr. (problems 3 and 29) 
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Figure 13.0 Comparison of experimental results(mn$ll cbrcles, triangles, and 
squares) and compted resuits(solid curves). 
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